Monte Carlo method : 蒙特卡罗法是通过基于概率模型的抽样进行数值近似计算的方法,蒙特卡洛法可以用于概率分布的抽样、概率分布数学期望的估计、定积分的近似计算
步骤分2步:1.基于概率模型做随机抽样;2.对数值做近似计算。
由于计算数学期望也是在计算积分,实际上利用求数学期望的方法求积分
用途:1.概率分布的抽样;2.利用求数学期望求定积分的近似计算
假设随机变量x,取值,其概率密度函数为p(x),f(x)为定义在上的函数,目标是求函数f(x)关于密度函数p(x)的数学期望
针对这个问题,蒙特卡洛法按照概率分布p(x)独立地抽取n个样本,用这样的抽样方法,则
作为数学期望的近似值。
根据大数定律可知,当样本容量增大时,样本均值以概率1收率于数学期望:
这样就得到数学期望的近似计算方法:
综上总结:对于一个复杂的积分(甚至不可积)1.如果我们对于积分的形式剥离出来f(x),p(x); 2.利用独立随机采样在p(x)采样(这里面的p(x)是常规函数,能够求出来其cdf的反函数)
例如:
f(x) = h, p(x) = U(a,b)
当然当能从h中剥离出来一个密度函数也是可以的,
f(x) = x ,