MCMC(2)--- Monte Carlo method(1)

蒙特卡洛方法是一种基于概率模型的数值计算技术,常用于复杂积分的近似计算和概率分布的抽样。通过随机抽样,然后计算样本均值,可以逼近数学期望和定积分的值。随着样本数量增加,样本均值会收敛到实际值。这种方法尤其适用于处理不可积或高维度的积分问题。
摘要由CSDN通过智能技术生成

Monte Carlo method : 蒙特卡罗法是通过基于概率模型的抽样进行数值近似计算的方法,蒙特卡洛法可以用于概率分布的抽样、概率分布数学期望的估计、定积分的近似计算

步骤分2步:1.基于概率模型做随机抽样;2.对数值做近似计算。

由于计算数学期望也是在计算积分,实际上利用求数学期望的方法求积分

用途:1.概率分布的抽样;2.利用求数学期望求定积分的近似计算

假设随机变量x,取值x\in \chi,其概率密度函数为p(x),f(x)为定义在\chi上的函数,目标是求函数f(x)关于密度函数p(x)的数学期望E_{p(x)}[f(x)]

针对这个问题,蒙特卡洛法按照概率分布p(x)独立地抽取n个样本x_{1},x_{2},...,x_{n},用这样的抽样方法,则

                \widehat{f_{n}} = \frac{1}{n}\sum_{i=1}^{n}f(x_{i})

作为数学期望E_{p(x)}[f(x)]的近似值。

 根据大数定律可知,当样本容量增大时,样本均值以概率1收率于数学期望:

\widehat{f_{n}} \rightarrow E_{p(x))}[f(x)], n \to \infty

这样就得到数学期望的近似计算方法:

E_{p(x)} \approx \frac{1}{n}\sum_{i=1}^{n}f(x_{i})

综上总结:对于一个复杂的积分(甚至不可积)1.如果我们对于积分的形式剥离出来f(x),p(x); 2.利用独立随机采样在p(x)采样(这里面的p(x)是常规函数,能够求出来其cdf的反函数)

例如:

   I(h) = \int_{a}^{b}h(x)dx  

f(x) = h, p(x) = U(a,b)

当然当能从h中剥离出来一个密度函数也是可以的\int_{-\infty }^{\infty }x\frac{1}{\sqrt{2\Pi}}exp(-\frac{x^{2}}{2}),

f(x) = x ,

 p(x) = \frac{1}{\sqrt{2\Pi}}exp(-\frac{x^{2}}{2})

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值