机器学习实战----贝叶斯之概览篇

本文介绍了贝叶斯统计理论的历史、重要性及其在机器学习中的应用,包括朴素贝叶斯分类器的三种类型。通过一个故事解释了贝叶斯原理的逆向思维过程,并强调了团队合作在学习中的价值。
摘要由CSDN通过智能技术生成

一介绍

        贝叶斯(约1701年至1761年)托马斯贝叶斯,英国数学家。约1701年出生于伦敦,做过神父。1742年成为英国皇家学会会员。1761年4月7日逝世。贝叶斯在数学方面主要研究概率论。他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数,统计推断,统计的估算等做出了贡献。

        期初,贝叶斯是想通过概率论的研究证明上帝的存在,可惜到他去世也没有得到证明。却为后人留下了宝贵的财富。贝叶斯理论在它诞生的时期是不被接受的,特别是受到传统统计学的排斥。

        放松一下,给大家讲个故事,在很久以前有个张大财主。他在自己家里修了一个大鱼塘,在里面养了黑鲤鱼与绿鲤鱼两种,黑鲤鱼2000条,绿鲤鱼3000条。有一天他问他的儿子,如果我用网捞鱼,每次只能捞出一条,并且的每次假设都能捞到,那我捞到黑鲤鱼的概率是多少?他的儿子小张很容易就得到了答案。过了一年这一池塘的黑鲤鱼与绿鲤鱼有的死了,有的被吃了,有的呢,又有了爱的结晶。现在已经不知道鱼塘里到底有多少鱼了,也不知道黑鲤鱼与绿鲤鱼各多少条?这个时候老张又问小张现在池塘里的黑鲤鱼与绿鲤鱼的比例是多少。这可苦坏了我们的小张,他总不能把池塘里的鱼都捞出来数一数吧。这个问题其实就是逆向概率问题,由因推果,由果溯因。但其实300多年前的贝爷爷就已经给我们找到了计算的方法,这就是伟大的贝叶斯原理。

       P(A | B)= P(A)* P(B | A)/ P(B)。      

       P(A)为先验概率,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值