卷积神经网络中的概念

卷积神经网络(convolutional neural network),顾名思义,就是含有卷积层(convolutional layer)的神经网络。但是卷积神经网络带来不仅仅只有卷积层,填充、步幅,以及池化层的操作,这些都是卷积神经网络基础中的基础。要好好掌握呀(╯▔皿▔)╯掀桌,感觉这些概念学了不止一次了,噗,菜是原罪

一、二维卷积层

卷积(convolution)运算其实就是将卷积核数组左右翻转,上下翻转,再进行互相关(cross-correlation)运算。

卷积运算在对称的卷积核里面等价于互相关运算。二维互相关如下图:

 

不过其实不对称也没有关系,因为卷积核(kernel,又叫过滤器filter)的值是在训练中学出来的,所以可以直接简化成互相关运算。以下为一个简单的互相关操作的函数:

from mxnet import autograd, nd
from mxnet.gluon import nn

def corr2d(X, K): 
'''实现一个cross-correlation操作'''
    h, w = K.shape
    Y = nd.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y

使用上面的互相关操作corr2d函数自定义一个二维卷积层,其实就是加上了初始化卷积核以及加上偏差的操作:

class Conv2D(nn.Block):
    def __init__(self, kernel_size, **kwargs):
        super(Conv2D, self).__init__(**kwargs) #super用来调用父类的构造函数
        self.weight = self.params.get('weight', shape=kernel_size) #定义权重,即卷积核的值
        self.bias = self.params.get('bias', shape=(1,)) #定义偏差

    def forward(self, x):
        return corr2d(x, self.weight.data()) + self.bias.data() 

通过数据学习核数组,这里学习一个目标为[1,-1]的边缘检测的核数组(没用上面自己定义的Conv2D函数):

# 构造一个输出通道数为1,核数组形状是(1, 2)的二维卷积层,这里直接用nn.Conv2D的函数,
# 没用上面自己写的是Conv2D是因为其使用了对单个元素(像素点)的操作而没有办法求导
conv2d = nn.Conv2D(1, kernel_size=(1, 2))
conv2d.initialize()

# 二维卷积层使用4维输入输出,格式为(样本, 通道, 高, 宽),这里批量大小(批量中的样本数)和通
# 道数均为1,这里X是有边缘的图,Y为对X做边缘检测得到的结果,使用的是[1,-1]的卷积核
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))

for i in range(10):
    with autograd.record():
        Y_hat = conv2d(X)
        l = (Y_hat - Y) ** 2 #平方损失
    l.backward()
    # 简单起见,这里忽略了偏差
    conv2d.weight.data()[:] -= 3e-2 * conv2d.weight.grad()
    if (i + 1) % 2 == 0:
        print('batch %d, loss %.3f' % (i + 1, l.sum().asscalar()))

二、填充和步幅

填充(padding)指的是在输入高和宽的两侧填充元素(通常是0元素)。

步幅(stride)指的是卷积窗口从左往右,从上到下移动的距离。

p_h和p_wp_w是高和宽的填充,而s_hs_w指的是从上往下和从左往右的步幅,则经过卷积之后输出的形状为:

 

                       向下取整( (n_h-k_h+p_h+s_h)/s_h) x 向下取整( (n_w-k_w+p_w+s_w)/s_w)

(ps:这里没有找到向下取整的符号,只好这样啦)

如果p_h = k_h-1p_w = k_w-1 ,且如数的高和宽分别能被高和宽上的步幅整除,则输出的形状可以简化为: 

                                                                (n_h/s_h)\times (n_w/s_w)

 

填充能够增加输出的高和宽,常常用来使输入和输出具有相同的高和宽。

步幅可以减小输出的高和宽。

三、多输入通道和多输出通道

通道(channel)指的是一张图片的除了高和宽之外的两个维度外的第三维信息(其实就是相当于一张图片能够分成多张图片啦),例如RBG颜色通道。

多通道输入:

可以看出,多通道输入的卷积操作有相同通道数的卷积核,但是输出只有一个通道(因为卷积了之后进行了叠加,这非常重要,不要搞混了)。理解了这个才能够理解多通道输出。

多通道输出:

多通道输出其实就是将本来的一组卷积核变成多组的卷积核,因此才会有多个输出。

1x1卷积层:

为什么要单独泰伦1x1卷积层呢?因为1x1卷积层被当作保持高和宽维度形状不变的全连接层使用,其可以调整网络之间的通道数。可以通过调整网络的通道数来控制模型的复杂度

三、池化层

池化(polling)层:为了缓解卷积层对位置的过度敏感性

最大池化层:计算池化窗口中的最大值

平均池化层:计算池化窗口中的平均值

最大池化层和平均池化层代码:

from mxnet import nd
from mxnet.gluon import nn

def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = nd.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()       
    return Y

填充和步幅:

# 构造(3,3)的最大池化层,默认获得(3,3)的步幅,其和池化窗口大小一致
pool2d = nn.MaxPool2D(3)

# 手动指定步幅和填充
pool2d = nn.MaxPool2D(3, padding=1, strides=2)

# 也可以指定非正方形的池化窗口,并分别指定高和宽上的填充和步幅
pool2d = nn.MaxPool2D((2, 3), padding=(1, 2), strides=(2, 3))

参考:

动手学深度学习——阿斯顿张、李牧

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值