用R语言绘制显示taxa特征值的散点图

    在系统发育分析时,经常会对树上taxa的性状进行描述性统计。对于离散型的变量,R中各种包(APE,phytools,etc)自带的函数可以较好解决问题,但对于连续型变量(如体长、体重等),则没有对应的函数进行显示。

   其实,可以通过Hmisc包中的dotchart3函数绘制“克利夫兰点图”,再将其拼接到系统发育树上解决此问题。效果如下图:

       图中,系统发育树右侧的dot plots是用dotchart3()绘制的taxa某个连续变量性状的值。其中,每个点的颜色、图标也可根据需要进行设定,用于同步显示与连续变量相关的离散变量的值。在此图中,点图表示的是各皿蛛的足长比,点颜色表示气管类型,点图标代表体色类型,点的位置和taxa在树上的位置对应。这样一图多用,是一种系统发育树上综合显示taxa各性状的好方法。

下面简单说一下实现方法:

1. R语言中安装Hmisc包

2.使用dotchart3()函数绘图。

   dotchart3 (x=[x],label=[tiplabel],
             groups = [len_x]:1,gdata =[x],gpch=[gpch],gcolor = [gcolor],
             color ="white",lcolor = "white")

其中࿱

### 使用R语言绘制LEfSe分析结果 为了在R语言中有效地完成LEfSe分析并将其结果可视化,需遵循一系列特定的方法来准备数据、执行分析以及最终呈现结果。以下是具体方法: #### 准备环境与加载包 确保安装了必要的软件包,这些对于后续的数据处理和绘至关重要。 ```r install.packages("microeco") # 安装microeco包用于微生物数据分析 library(microeco) ``` #### 导入数据集 导入经过预处理后的OTU表和其他元数据文件,这一步骤是整个工作流的基础[^5]。 ```r otu_table <- read.table("path/to/your_otutable.txt", header=TRUE, row.names=1, sep="\t") metadata <- read.csv("path/to/metadata.csv", stringsAsFactors = FALSE) ``` #### 执行LEfSe分析 利用`lefse()`函数来进行核心的统计测试,该函数接受标准化后的丰度矩阵作为输入参数之一,并返回含有显著性标记的结果对象。 ```r result_lefse <- lefse(otu_table, metadata$Group, alpha=0.05, log.LDA.threshold=2.0) ``` 此处设置alpha水平为0.05表示P值阈限;log LDA得分大于等于2则认为具有生物学意义[^2]。 #### 可视化LEfSe分析成果 通过调用专门设计好的绘功能展示分类学层次结构上的富集情况——即所谓的Cladogram表形式[^3]。 ```r plot_cladogram(result_lefse, taxonomic_levels=c('Kingdom', 'Phylum', 'Class', 'Order', 'Family', 'Genus'), show_taxa_labels=TRUE, color_by="effect_size", palette="Set2") ``` 此命令不仅生成了直观易懂的分支状布局,还允许自定义显示哪些级别的分类单位标签,同时依据效应大小着色以增强视觉效果。 另外还可以创建LDA评分直方以便更清晰地看出各组之间的区别程度。 ```r hist(result_lefse$LDA_scores, breaks=seq(-8, max(abs(result_lefse$LDA_scores)), length.out=20), col='lightblue', main="Distribution of LDA Scores from LEfSe Analysis", xlab="Logarithmic Linear Discriminant Analysis Score (Effect Size)") abline(v=-2, lty=2); abline(v=2, lty=2) # Highlight significant thresholds with dashed lines. ``` 上述代码片段展示了如何构建一个带有明显界线的历史记录,帮助识别那些跨越临界点的重要特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值