BEAST推断贝叶斯树时如何使用bModelTest选择最优分子替换模型

在Beautit的Site Model中选择BEAST Model Test,在下面的选项中选择transition TransversionSplit,之后正常做mcmc跑树。用Tracer和bModelTestAnalyser查看结果。

使用Tracer查看结果时,所有参数ESS应大于200.

其中重要的参数有如下几项:

substmodel:用6位数字指代模型名称,如HYK,GTR等;

hasGrammaShape:模型是否+G

hasProportionInvariant:模型是否+I

hasEqualFreqs:模型中四种碱基是否等频率。 

使用bModeTestAnalyser能更加直观的观看最优模型的结果(6位数字代码)和支持度信息。

根据BEAST文档,有两种使用bModelTest的方法。一种是先运行bModelTest,从结果中获取最优模型和参数,一种是利用bModelTest自动化averaging所有模型,直接得出结论。好像Beast的开发者更倾向于使用这种方法。

贝叶斯进化分析(BEAST)是一种用于进行生物进化研究的计算工具,其原理基于贝叶斯统计方法。贝叶斯统计方法是一种基于已知先验概率和新观测数据的后验概率推断方法,可用于确定参数的可能性分布。 贝叶斯进化分析首先需要建立一个进化模型,该模型描述了物种间的分支关系、进化速率、选择压力等。然后,根据已知的分子数据(例如DNA序列)和模型使用算法进行参数推断模型校验。 BEAST利用马尔可夫链蒙特卡洛(MCMC)方法进行参数推断模型校验。MCMC方法通过随机抽样得到参数的可能性分布,以取代传统的点估计方法。例如,BEAST可以推断物种的进化树拓扑结构,以及进化树上的时间尺度和进化速率。 在BEAST中,MCMC方法通过采样从先验分布到后验分布,反映了参数的不确定性。每次迭代都会生成一个参数组合,称为“样本”,并计算其后验概率。通过大量的迭代得到的样本,可以得到参数的后验分布,从而推断进化树的参数。 BEAST还可用于提供超参数(例如进化速率、树拓扑分布)的不确定性估计。此外,BEAST还提供了一些其他功能,如分子钟分析、种群动力学模拟等。 综上所述,贝叶斯进化分析利用贝叶斯统计方法和MCMC算法来推断生物进化模型的参数,并提供参数的不确定性估计。通过该方法,我们可以更好地理解和研究生物的进化过程。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值