FMCW雷达测距,测速,测角原理

本文详细介绍了FMCW雷达的基本原理,包括中频信号的产生、测距和测速机制,以及如何通过多目标速度检测和角度估计提高精度。讨论了关键参数如距离分辨率、最大检测距离、速度分辨率和角度分辨率,以及影响雷达精度的因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FMCW雷达测距,测速,测角原理


本文内容参照TI课程进行编写,如有需要完善的地方,欢迎及时提出: link

(一)FMCW雷达基础知识(Module 1)

FMCW(调频连续波)雷达主要用于对放置在雷达之前的目标物体的距离,速度和到达角的测量,傅里叶变换是FMCW雷达信号处理的核心,雷达发射的信号叫作啁啾信号(Chirp)。

1. 中频信号(IF)

在这里插入图片描述
中频信号是由混频器输出端信号的频率为TX - chirp和RX - chirp的瞬时频率之差产生的{证明过程:Radar测距及测速原理(1)——FMCW测距和测速原理及具体推导 - 知乎 (zhihu.com)}。这个中频信号频率恒定,为S τ = S2d / c;(由于τ = 2d / c ,其中d为物体的距离, c为光速),对该IF信号进行傅立叶变换会显示多个峰值,并且这些峰值的频率将与相应物体的距离成正比。
-注意
IF信号仅从RX天线接收到反射信号时起有效。如果要使用ADC对该中频信号进行数字化,则需要确保仅在经过该时间tau之后采集样本,并且仅在存在TX信号的时间之前采集样本。TX线性调频脉冲的非重叠段通常是可忽略的。
在这里插入图片描述

2. 距离分辨率(dres)

距离分辨率用于体现雷达对多个检测目标的区分能力。
根据我们对傅立叶变换的回顾,一种增大距离分辨率的选择是通过增加中频信号的长度来扩展这两个正弦波的观测窗口。请注意,增加中频信号的持续时间会成比例地增加啁啾的带宽,这给了我们一个线索,即可能更大的带宽对应于更好的距离分辨率。
在这里插入图片描述
因此,由该表达式给出两个距离为△d的物体的中频频率将由△ f分隔。为了使这两个频率在中频频谱中显示为不同的峰值,该频率间隔△ f必须大于1乘以中频信号的持续时间,这实际上等于线性调频的持续时间Tc。如果你在一开始就忽略了这小部分,即往返延迟产生的τ部分。注意,斜率乘以线性调频持续时间实际上是线性调频的带宽,因此,这个表达式可以进一步简化,即只要两个物体之间的距离(分离)大于光速与啁啾带宽的两倍之比,它们就可以在中频频谱中分离。因此,这里的结论是,距离分辨率仅取决于啁啾扫过的带宽,由这里的表达式给出——光速除以带宽的两倍。
在这里插入图片描述
—如图Chirp A和Chirp B的距离分辨率相等。

3. 最大检测距离(dmax)

在这里插入图片描述
【采样定理】
采样定理又称香农采样定理,或奈奎斯特采样定理,信号带宽B 小于等于采样频率Fs (即奈奎斯特频率)的一半(即采样频率Fs大于等于信号最高频率fmax的两倍),那么此时这些离散的采样点能够完全表示原信号。若非如此则会导致混叠现象。
——————————
这意味着低通滤波器应该具有超过该IF最大值的截止频率,而且ADC的采样率也应该大于相同的值。【我们假设一个复基带信号(因此是实际信号奈奎斯特速率的一半)】所以你可以在这里看到,ADC的最大采样率可以限制最大检测距离。
请注意,最大中频带宽取决于斜率和最大距离的乘积。因此,如果ADC采样率和中频带宽是传感器的瓶颈,你总是可以权衡斜率和最大距离。通常,雷达倾向于使用较小的斜率来获得较大的
dmax
在这里插入图片描述
请注意,Chirp A的斜率是Chirp B的一半,因此对于相同的最大范围要求,或对于相同的dmax,Chirp A应该只需要IF带宽的一半,这转化为具有较小采样率的ADC。因此,虽然Chirp A具有更宽松的ADC要求的优点,当然Chirp B具有只需要测量时间一半的优点。
在这里插入图片描述
较大的射频带宽直接转化为更好的距离分辨率。射频带宽通常在几百兆赫到几千兆赫的范围内。例如,4吉赫兹的射频带宽转化为4cm的距离分辨率,400兆赫的射频带宽转化为大约30cm的距离分辨率。大的中频带宽(fIF_max)主要使雷达能够看到更大的最大距离,同时也能产生具有更高斜率的更快啁啾。典型雷达的中频带宽在低兆赫区域。你可以有一个跨越大带宽的射频信号,但ADC只需要采样几个兆赫兹的信号。

(二)FMCW雷达中频信号的相位(Module 2)

中频信号的相位是雷达在心跳检测和振动检测等应用中使用的基础。
在这里插入图片描述
图中与正弦曲线(有限长度)的频率相对应的峰值的位置所在频率。
——频域中的信号是具有振幅和相位的复数。回想一下,复数可以用Ae的形式进行数学表示,其中A是振幅,θ是相位。或者,它也可以用图片表示为相位器,相位器是一个向量,其长度与振幅A相对应,方向与相位θ相对应。
图中的频谱峰值所对应的相位与正弦函数的初始相位相对应。
——为了完整起见,刚才描述的概念只对复数的输入信号是严格正确的,即ejwt形式的输入信号。然而,从概念上讲,这些理念同样适用于实数的输入信号,例如这里的正弦波。
【混频】
基本概念:混频(Mixing)是一种信号处理过程,通过这个过程,可以将输入信号的频率转换到另一个频率。这是通过将输入信号与一个本振信号(Local Oscillator, LO)相乘实现的,本振信号是一个频率已知的参考信号。
工作原理:在雷达系统中,接收到的回波信号通常是高频信号,直接处理这些高频信号既复杂又昂贵。因此,将回波信号与本振信号混合,产生两个新的频率:和频(f_LO + f_signal)和差频(f_LO - f_signal)。其中,差频通常是我们感兴趣的,因为它比原始信号和本振信号的频率要低,更易于处理。
主要目的:是频率下转换(Downconversion),将接收到的高频信号转换为较低频率的中频(IF)信号或基带信号,便于放大、滤波和进一步的数字信号处理。
——————————
在本模块中,我们将使用A-t图来分析中频信号的相位与到物体的距离之间的关系。
在这里插入图片描述
相位φ0恰好是该IF信号在点c处的相位,因此,c处的这个相位,与φ0相同,将是点A处TX线性调频的相位和点B处RX线性调频的相位差
调频连续波(FMCW)雷达的核心特点是其发射的信号频率随时间变化,这意味着其波长也随之变化。FMCW雷达的波长不是恒定的,而是随着发射信号的频率变化而变化。这种频率(因此也是波长)的变化是FMCW雷达测量距离和速度的基础。通过分析从目标反射回来的信号与当前发射信号之间的频率差(拍频),雷达能够计算出目标的距离以及相对速度。
在这里插入图片描述
Δ τ = 2 Δ d c , c = λ f c \small\mathrm{\Delta}\tau = \frac{2\mathrm{\Delta}d}{c},c = \lambda f_{c} Δτ=c2Δd,c=λfc
中频信号的相位对物体范围的微小变化非常敏感。
由上述内容可知,对于单个目标,我们可以利用 IF 信号的频率来测量其距离,用 IF 信号相位变化来测量目标自身的微小变化。

1. 测距原理

由中频信号 f I F = S 2 d c f_{IF} = \frac{S2d}{c} fIF=cS2d可知雷达检测目标的距离d:
d = c f I F 2 S = c T c f I F 2 B d = \frac{cf_{IF}}{2S} = \frac{cT_{c}f_{IF}}{2B} d=2ScfIF=2BcTcfIF

2. 测速原理

为了测量速度(瞬时径向速度v),FMCW雷达会发射两个间隔为Tc的线性调频信号。则与雷达相距 d(d+△d)的同一目标产生的两个 IF 信号经过距离 FFT 处理后将在(几乎)同一位置出现谱峰。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图中相位曲线的周期性直接反映了振动的周期

(三)FMCW雷达多目标速度检测(Module 3)

在这里插入图片描述
序列的傅立叶变换,或者确切地说是离散傅立叶变换,将在离散频率ω1的频域中产生单个峰值。后面的这个离散序列的傅立叶变换实际上在ω1和ω2的离散频率处分别具有两个峰值。
雷达能够检测多目标的问题便转化为两个频率ω1和ω2必须相距多远才能在傅立叶变换中显示为单独的峰值。
在这里插入图片描述
序列长度越长=>分辨率越好。一般来说,长度为N的序列可以分离间隔大于2π/N 弧度/样本的角频率。{参照:信号与系统漫谈第34讲:周期序列的傅里叶变换 - 知乎 (zhihu.com)}
在这里插入图片描述
图片来自上一个模块,对于连续信号,只要它们的分离Δf大于1/T赫兹或者1/T周期每秒,T是观测窗口,就可以分辨出两个频率。对于离散信号,正如我们在上一张幻灯片中所说,只要每个样本的分离Δω大于2π/N弧度每样本,就可以分解出两个离散频率。在一种情况下,分辨率与以观测时间T表示的长度成反比,而在另一种情况中,分辨率与用观测样本数量N表示的长度呈反比。

1. 最大检测速度(Vmax)

在这里插入图片描述
使用我们刚才描述的技术可以测量的最大速度有限制吗?请注意,该方法依赖于相位差测量,这是明确的,只要该差在正负180度或正负π弧度内。对于正速度,你可以看到相位器逆时针移动。同样对于负速度,你也可以看到相位器顺时针移动,故最大检测速度又称最大不模糊速度。
因此,更高的vmax需要更紧密发射间隔的两个啁啾信号。

2. 速度分辨率(Vres)

在这里插入图片描述
与这些啁啾中的每一个相对应的范围FFT将在相同的位置具有峰值。但是,与这些峰值的相量相对应的离散序列将具有两个旋转相量,它们以ω1和ω2的频率旋转,对应于两个速度v1和v2。
用对应于距离FFT峰值的相量序列上做FFT分辨这两个物体。这被称为Doppler-FFT。因此,在这个离散序列上进行FFT会显示出两个峰值,分别对应于离散角频率ω1和ω2。然后,在测量了ω1和ω2之后,我们可以使用我们之前看到的这些表达式来反向计算速度。
速度分辨率表示速度维区分两个同一位置的目标的能力。假设一帧传输N个Chirp,考虑到角频率的精度为Δω=2π/N,带入测速公式得到速度维频率分辨率为:
Δ v = λ 2 N T c \mathrm{\Delta}v = \frac{\lambda}{2NT_{c}} Δv=2NTcλ

3. 小结

在生命体征检测中,毫米波的频率范围太高,ADC不可能有这么高的采样率直接采集它的原始信号,所以需要提取中频信号(降到几百兆赫兹)再用ADC进行采样。
一个chirp的持续时间通常是几十微秒,是一个快时间的维度,所以想通过距离的变化测量速度是非常困难的,因为这一瞬间身体的移动距离是很小的。可以相隔久一点的时间再发射一次chirp,在这段时间内就会存在一段运动距离,运动距离会带来相位差。

(四)FMCW雷达角度估计(Module 4)

我们知道,使用range-FFT可以分辨不同距离的物体。然后,在frame中的一系列chirp信号进行Doppler-FFT,可以分辨出可能处于相同距离但相对于雷达具有不同速度的物体。
在这里插入图片描述
在相同距离时测量多个物体的速度,通过将range-FFT之后的数据存储在一维数组(range-bins)中,而N个chirp信号组成的frame进行range-FFT之后就会产生一个二维数组,在二维数组中对每一列作FFT便是Doppler-FFT,得出的结果峰值处的角频率对应两个与雷达相同距离的物体的速度。
请注意,x轴实际上是与range bins相对应的频率,但由于距离与IF频率成正比,因此我可以等效地将x轴绘制为距离轴。y轴实际上是与多普勒FFT相对应的离散角频率,但由于这些离散角频率与速度相关,我可以等效地将y轴绘制为速度轴。
你可以看到第3列有2个不同速度的物体,第8列有3个不同速度的物体。
另一件需要注意的事情是,只有当所有range-FFTs都可用时,也就是说,一旦填充了所有这些行,才能执行Doppler-FFT。
【range-bin】

  1. 距离分辨单元:range-bins又称为距离分辨单元,是进行range-FFT之后生成的频域中的各个离散点,每个点代表了一个特定的距离范围,这个范围的精确度取决于雷达信号的带宽和FFT的大小。带宽越大,单个range-bin所代表的距离范围越小,意味着距离分辨率越高。
  2. 反射信号的强度:每个range-bin的幅度(或强度)表示在该特定距离上反射雷达信号的强度。幅度较大的range-bin表示该距离处有一个或多个反射目标,且反射信号较强。
  3. 计算公式:range-bin与目标距离之间的关系可以通过下式来估算: 距离 = c 2 B × r a n g e   b i n s 索引 × F s N 距离 = \frac{c}{2B} \times range~bins索引 \times \frac{F_{s}}{N} 距离=2Bc×range bins索引×NFs其中c是光速,B是雷达信号调频带宽,Fs是采样频率,N是FFT点数。
  4. 重要性:虽然range-bins本身反映的是距离信息,但也是进一步进行多普勒处理(速度估计)和角度估计的基础
1. 公式总结

在这里插入图片描述
假设雷达设备将支持由最后一个方程确定的必要中频带宽。

2. 雷达信噪比

在这里插入图片描述由于信号的传播,它的功率密度随着距离的平方而下降。这种功率密度可以通过使用增益更好的天线来增加。通常情况下,天线通过增加方向性来提高增益,也就是说,将设备的输出功率集中在更窄的视场上,如图所示。
现在,雷达反射截面RCS基本上是衡量目标在雷达接收器方向上反射雷达信号的能力。
在这里插入图片描述
随着测量时间的增加,我们可以在更长的时间内观察到我们想要的信号和我们不想要的噪声。但需要注意的关键是,信号是确定性的,而噪声是随机的。因此,当输入信号通过雷达处理链时,包括range-FFT和Doppler-FFT,有用信号的部分是相干累积的,而噪声往往会被平均掉。这也被称为处理增益,基本上由Tmeas这个因子表示。

3. 测角原理

在这里插入图片描述
原因是上图中Δτ=2Δd/c,下图中Δτ=Δd/c
在这里插入图片描述
在这里插入图片描述
原因是sin(θ)的非线性性质。因此,对于两个被△θ分开的物体,它们在angle-FFT中的角频率实际上在θ=0时相距更远,并且随着θ的增加而靠近,即使在两种情况下Δθ是相同的。
在这里插入图片描述
上图给出了N个接收天线,将N个天线接收的信号排列起来就可以形成一个随天线位置变化的向量序列。与range-FFT生成Doppler-FFT的处理方法类似,此时对N个天线形成的向量序列做FFT处理,就可以得到目标与天线序列相关的频谱,这种处理方式称为angle-FFT,而频谱中出现的峰值,即为目标随天线阵列变化的角频率。
在这里插入图片描述
之前推导了角频率与目标角度的关系,所以直接利用两者的转换公式,就可以得到两个目标各自的角度信息:
在这里插入图片描述
**请注意,FMCW雷达进行角度估计可以不必经过Doppler-FFT。**角度估计主要依赖于雷达天线阵列接收到的信号相位差异,而这可以独立于Doppler处理来实现。首先,对接收到的信号进行距离FFT,以确定目标的距离。目标相对于天线阵列的角度导致每个天线接收到的信号之间存在相位差异。通过测量这些相位差异,可以估计目标的角度。这一分析可以直接在距离FFT之后进行,无需进行Doppler-FFT。

4. 最大检测角度

在这里插入图片描述
因此如图所示,对于a or b如果你想象这代表雷达左侧物体的2D-FFT峰值对应的相量,当你从第一个RX天线到第二个RX天线时,这个相量逆时针移动。同样,对于雷达右侧的物体,相量顺时针移动。故当天线间距d=2λ/2时,可以得到最大视角(+/- 90°)

5. 角度分辨率

在这里插入图片描述
与雷达等距的两个物体以相同的速度接近雷达。如下图所示。频谱峰值处的值具有来自两个目标的相量分量。因此前面介绍的方法将不起作用。
在这里插入图片描述
此时,我们可以通过设置 N个接收天线来测量目标到达角。如下图所示。雷达接收到目标回波后经过距离FFT 和多普勒FFT即可得到多普勒FFT 的频谱图。则对与多普勒FFT 峰值相对应的相位序列进行 FFT 来解析这两个目标。这称为角度FFT(angle-FFT)。
在这里插入图片描述
角度分辨率θres是两个物体在角度FFT中可显示为两个谱峰时的最小角度间隔
在这里插入图片描述
1 cycle = 2π radians = 360°

6. 速度和角度估计对比

在这里插入图片描述
一般地,波长越短或天线孔径(天线的物理大小)越大,雷达的角度分辨率越高。在FMCW雷达中,波长由雷达的工作频率决定,波长较短的雷达(如毫米波雷达)可以提供较好的角度分辨率。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7. 小结

在这里插入图片描述
在这里插入图片描述

(五)FMCW雷达的精度(Module 5)

普通成年人呼吸心跳参数如下:
呼吸:成人每分钟16—20次,女性比男性每分钟多2—3次。
正常情况下脉率与心率一致,每分钟为60—80次,节律整齐,强度均匀。
生命体征检测中,毫米波雷达能检测到的微动距离与雷达的距离分辨率无关,距离分辨率是针对多个物体(或点)的检测,若小于距离分辨率则检测不到;微动距离和雷达的检测精度有关,而检测精度由信噪比和有效带宽决定。

1. 距离精度

在这里插入图片描述

2. 速度精度

在这里插入图片描述

3. 角度精度

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值