AI学习指南RAG篇(20)-RAGFlow核心技术

在这里插入图片描述

一、引言

RAGFlow是一款基于深度文档理解的开源RAG(Retrieval-Augmented Generation,检索增强生成)引擎,旨在解决现有RAG技术在数据处理和生成答案方面的挑战。RAGFlow通过结合大型语言模型(LLMs)的强大生成能力和高效的信息检索系统,为用户提供了一种全新的交互体验。本文将深入讲解RAGFlow的核心技术,包括多重召回、查询分析、任务调度和LLM等。

二、RAGFlow的核心技术

1. 多重召回(Multi-way Recall)

1.1 概念

多重召回是RAGFlow中的一种关键机制,它通过多个召回通道并行运行,结合多种检索策略和模型,提升信息检索的多样性和精准度。这种方法能够从多个角度检索相关信息,确保生成的回答更加全面和准确。

1.2 工作原理

多重召回的工作原理是通过多个召回通道并行运行,每个通道使

### 本地部署 RAGFlow 和 Ollama 实现 RAG 的实战教程及配置指南 #### 部署环境准备 为了成功运行 RAGFlow 和 Ollama,需确保安装必要的依赖项并设置合适的硬件资源。推荐的操作系统为 Linux 或 macOS,因为它们提供了更稳定的容器支持和 GPU 加速功能[^1]。 - **Python 版本**: Python >= 3.8 是必需的,建议使用虚拟环境管理工具如 `venv` 或 `conda`。 - **Docker 安装**: Docker 提供了一个简单的方式来管理和运行复杂的 AI 应用程序组件。通过 Docker Compose 文件可以轻松启动多个服务实例[^2]。 ```bash sudo apt update && sudo apt install docker.io docker-compose -y ``` #### 下载与初始化项目 获取官方仓库中的代码文件作为基础架构起点: ```bash git clone https://github.com/example/RAGFlow.git cd RAGFlow/ docker-compose pull ``` 上述命令会克隆最新的开源版本到当前目录下,并拉取所需的镜像完成初步准备工作[^3]。 #### 数据预处理阶段 高质量的数据集对于提升检索效果至关重要。因此,在导入前应执行一系列操作以改善原始文档质量,比如去除重复内容、标准化格式以及提取关键字段等过程均属于此范畴内。 ```python from langchain.text_splitter import RecursiveCharacterTextSplitter def preprocess_data(raw_texts): splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) chunks = [] for text in raw_texts: splits = splitter.split_text(text) chunks.extend(splits) return chunks ``` 以上脚本展示了如何利用 LangChain 工具包将大段文字分割成适合索引入库的小片段。 #### 启动核心服务 当所有前置条件满足之后,则可依次激活各个模块的服务端口监听状态。以下是具体的启动流程说明: ```yaml version: '3' services: ollama: image: ghcr.io/jmorganca/ollama:latest ports: - "11434:11434" ... ``` 在此 YAML 配置示例中定义了 Ollama API Server 所绑定的具体地址范围以便外部调用访问。 #### 测试连接验证 最后一步就是确认整个链路是否正常工作。可以通过简单的 HTTP 请求发送样例问题给后端接口查看返回结果是否合理有效。 ```bash curl http://localhost:7860/run \ -H "Content-Type: application/json" \ -d '{"query":"What is the capital of France?"}' ``` 如果一切顺利的话,应该能够看到关于巴黎的相关描述信息作为最终答案呈现出来。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值