机器学习算法——决策树(Decision Tree)

本文详细介绍了决策树算法,包括ID3、C4.5和CART三种常用方法。决策树是一种用于分类和回归的模型,通过递归特征选择进行数据划分。ID3以信息增益为选择标准,C4.5使用信息增益率改进了ID3对连续属性的处理,CART构建二叉树进行分类和回归。此外,还讨论了决策树的剪枝策略以防止过拟合。
摘要由CSDN通过智能技术生成

决策树在分类、预测、规则提取等方面有着广泛应用,是一种基本的分类与回归方法。包括ID3 、c4.5、CART算法。决策树的生成是一个递归的过程。在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。与其他算法相比,决策树的原理浅显易懂,计算复杂度较小,而且输出结果易于理解。

分类决策树模型是一种描述对实例进行分类的树形结构。决策树由节点与有向边组成。节点有两种类型:内部结点和叶节点,内部结点表示一个特征或者属性,叶节点表示一个类。

分类的时候,从根结点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其子节点;此时,每一个子节点对应着该特征的一个取值。如此递归向下移动,直至达到叶节点,最后将实例分配到叶节点的类中。

决策树学习算法包括特征选择,决策树的生成与剪枝过程。决策树的学习算法通常是通过递归来选择最优特征,并用最优特征对数据集进行分割。开始时,构建根结点,选择最优特征,该特征有几种值就分割为几个子集,每个子集分别递归调用此方法,返回节点就是上一层的子节点,直到所有特征都已经用完,或者数据集只有一维特征为止。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值