视频结构化分析及其数据集汇总

该文详细介绍了视频结构化的三个主要方面:行人结构化涉及衣着、携带物、发型等属性识别;人骑车结构化关注骑行者服装、携带物及非机动车特征;汽车结构化涵盖了车型、颜色、车牌等信息。这些数据对于智能交通、行人监控和自动驾驶等领域具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视频结构化分为:行人结构化、人骑车结构化和汽车结构化

行人结构化:

  1. 上身衣着类型(马甲吊带背心、衬衫、西服、毛衣、皮衣夹克、羽绒服、大衣风衣、外套、连衣裙、无上衣等)
  2. 上身衣着颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等)
  3. 下身衣着类型(长裤、短裤、长裙、短裙、连衣裙等)
  4. 下身衣着颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等)
  5. 鞋子类型(光脚、皮鞋、运动鞋、靴子、凉鞋等)
  6. 鞋子颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等)
  7. 携带包类型(单肩包、双肩包、拉杆箱、钱包等)
  8. 携带包颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等)
  9. 发型特征(长发、短发、光头等)
  10. 是否戴帽子(是、否)
  11. 头部颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等)
  12. 衣服纹理(纯色、碎花、条纹、格子等)
  13. 性别(男、女等)
  14. 体态(胖、瘦、中)
  15. 种族(汉族、维族、黑人、白人等)
  16. 年龄段(幼儿、儿童、青年、中年、老年等)
  17. 携带物(打伞、抱小孩、拿手机、眼镜、墨镜、口罩、围巾、腰带、无携带物等)
  18. 朝向(正面、背面、侧面)

人骑车结构化:

  1. 上身衣着类型(T恤、马甲吊带背心、衬衫、西服、毛衣、皮衣夹克、羽绒服、大衣风衣、外套、连衣裙、无上衣等)
  2. 上身衣着颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等)
  3. 下身衣着类型(长裤、短裤、长裙、短裙、连衣裙等)
  4. 下身衣着颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等)
  5. 携带包类型(单肩包、双肩包、无包、钱包等)
  6. 携带包颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等)
  7. 发型特征(长发、短发、光头)
  8. 帽子、头盔
  9. 衣服纹理(纯色、碎花、条纹、格子等)
  10. 性别(男、女等)
  11. 体态(胖、瘦、中)
  12. 种族(汉族、维族、黑人、白人等)
  13. 年龄段(幼儿、儿童、青年、中年、老年等)
  14. 眼部特征(正常眼睛、眼镜、墨镜等)
  15. 嘴部特征(正常嘴,戴口罩等)围巾特征(普通围巾、包头围巾等)
  16. 非机动车颜色(黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色、银等)
  17. 朝向(正面、背面、侧面)
  18. 车上人数(0、1、2、更多)
  19. 是否打伞
  20. 是否携带物品

汽车结构化

  1. 车型 轿车、公交车、货车公共汽车、厢式货车和其他车辆
  2. 车身颜色 黑、白、红、黄、蓝、绿、紫、棕、灰、橙、多色等
  3. 品牌
  4. 子品牌
  5. 年款
  6. 车牌号码 OCR
  7. 特征物(年检标、纸巾盒、遮阳板、挂件、摆件、主驾安全带、副驾安全带、打手机)
  8. 运动方向 前后左右
  9. 运动距离
  10. 经过时间
  11. 经过地点
  12. 目标大小
  13. 目标快照(原始分辨率)

数据集:Benchmarks
Pedestrian Attribute Recognition: A Survey
参考:Pedestrian Attribute Recognition: A Survey link
行人属性数据集汇总:https://www.cnblogs.com/geoffreyone/p/10336919.html link

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值