文献阅读 - Poisson Image Editing

1 泊松图像编辑(Poisson Image Editing )泊松图像编辑(Poisson Image Editing)的核心观点是图像融合时,用色彩梯度代替色彩强度可以产生更真实的效果。经无缝融合(seamless cloning)后,融合图像的蒙板区域内色彩强度与源图像的蒙板区域色彩强度不一致;但融合图像的蒙板区域内色彩梯度与源图像的蒙板区域色彩梯度基本相同。此外,融合图像的在蒙板区域边...
摘要由CSDN通过智能技术生成

1 泊松图像编辑(Poisson Image Editing )

泊松图像编辑(Poisson Image Editing)的核心观点是图像融合时,用色彩梯度代替色彩强度可以产生更真实的效果。

在这里插入图片描述

经无缝融合(seamless cloning)后,融合图像的蒙板区域内色彩强度与源图像的蒙板区域色彩强度不一致;但融合图像的蒙板区域内色彩梯度与源图像的蒙板区域色彩梯度基本相同。此外,融合图像的在蒙板区域边界处色彩强度与目标图像的色彩强度相同

参考文献:Rez P, Gangnet M, Blake A. Poisson image editing.[J]. Acm Transactions on Graphics, 2003, 22(3):313-318.

1.1 引言(Introduction)

该方法的数学思想是给定狄利克雷边界条件的泊松偏微分方程。

(1)图像中,拉普拉斯算子提取的二阶变化量在感知上最明显;

(2)唯一解:有界域上的标量函数可由其边界值和域内拉普拉斯算子唯一确定(即, φ ( x , y ) \varphi(x, y) φ(x,y) f ( x , y ) f(x, y) f(x,y) g ( x , y ) g(x, y) g(x,y)唯一确定,见1.2.0 泊松方程)。

泊松方程的求解过程也可理解为最小化问题:给定边界条件,在 L 2 L_2 L2范数意义下,计算梯度最接近引导向量场(guidance vector field)的函数。

1.2 导向插值求解泊松方程(Poisson solution to guided interpolation)

1.2.0 泊松方程(Poisson’s Equation)

  • 泊松方程

− Δ φ = f - \Delta \varphi = f Δφ=f

  • 狄利克雷边界条件(Dirichlet boundary condition)

微分方程的“第一类边界条件”,给定微分方程的解在边界处的值。

  • 给定狄利克雷边界条件的泊松偏微分方程

{ − Δ φ ( x , y ) = f ( x , y ) x , y ∈ Ω φ ( x , y ) = g ( x , y ) x , y ∈ ∂ Ω \begin{cases} -\Delta \varphi(x, y) = f(x, y) & x, y \in \Omega \\ \varphi(x, y) = g(x, y)& x, y \in \partial \Omega \end{cases} { Δφ(x,y)=f(x,y)φ(x,y)=g(x,y)x,yΩx,yΩ

其中 Ω ⊂ R n \Omega \subset R^n ΩRn为有界开集, Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} Δ=x22+y22为拉普拉斯算子(Laplacian operator)。

1.2.1 引导插值(Guided Interpolation)

  • 引导插值:利用引导向量场(guidance vector field)进行图像插值。

S S S R 2 R^2 R2的闭子集,表示图像的定义域;

Ω \Omega Ω S S S的闭子集,其边界为 ∂ Ω \partial \Omega Ω

f ∗ f^{\ast} f:定义在 Ω \Omega Ω域边界及外部( S − Ω + ∂ Ω S- \Omega + \partial \Omega SΩ+Ω)上的已知标量函数(scalar function);

f f f:定义在 Ω \Omega Ω域内部( Ω − ∂ Ω \Omega - \partial \Omega ΩΩ)上的未知标量函数(scalar function);

v \mathbf{v} v:定义在 Ω \Omega Ω域上的矢量场(vector field)

在这里插入图片描述

  • 最小化问题:

min ⁡ f ∬ Ω ∣ ∇ f − v ∣ 2 with  f ∣ ∂ Ω = f ∗ ∣ ∂ Ω \min_f \iint_{\Omega} \left| \nabla f - \mathbf{v} \right|^2 \quad \text{with} \ \left. f \right|_{\partial \Omega} = \left. f^{\ast} \right|_{\partial \Omega} fminΩfv2with fΩ=fΩ

(3)

其中, ∇ = [ ∂ ∂ x , ∂ ∂ x ] \nabla = \left[ \frac{\partial }{\partial x}, \frac{\partial }{\partial x} \right] =[x,x]为梯度算子(gradient operator),矢量场 v \mathbf{v} v引导场(guidance field)。该问题的解为给定狄利克雷边界条件的泊松偏微分方程的唯一解:

Δ f = ∇ ⋅ v  over  Ω with  f ∣ ∂ Ω = f ∗ ∣ ∂ Ω \Delta f = \nabla \cdot \mathbf{v} \ \text{over} \ \Omega \quad \text{with} \ \left. f \right|_{\partial \Omega} = \left. f^{\ast} \right|_{\partial \Omega} Δf=v over Ωwith fΩ=fΩ

(4)

其中, ∇ ⋅ v = ∂ u ∂ x + ∂ v ∂ y \nabla \cdot \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} v=xu+yv表示 v = ( u , v ) \mathbf{v} = \left( u, v\right) v=

  • 16
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值