kalman 滤波 演示与opencv代码

1 篇文章 0 订阅
1 篇文章 0 订阅

[转载]http://blog.csdn.net/onezeros/article/details/6318944


在机器视觉中追踪时常会用到预测算法,kalman是你一定知道的。它可以用来预测各种状态,比如说位置,速度等。关于它的理论有很多很好的文献可以参考。opencv给出了kalman filter的一个实现,而且有范例,但估计不少人对它的使用并不清楚,因为我也是其中一个。本文的应用是对二维坐标进行预测和平滑

 

使用方法:

1、初始化

const int stateNum=4;//状态数,包括(x,y,dx,dy)坐标及速度(每次移动的距离)
const int measureNum=2;//观测量,能看到的是坐标值,当然也可以自己计算速度,但没必要
Kalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)


转移矩阵或者说增益矩阵的值好像有点莫名其妙

  1. float A[stateNum][stateNum] ={//transition matrix   
  2.         1,0,1,0,  
  3.         0,1,0,1,  
  4.         0,0,1,0,  
  5.         0,0,0,1  
  6.     };  

看下图就清楚了

X1=X+dx,依次类推
所以这个矩阵还是很容易却确定的,可以根据自己的实际情况定制转移矩阵

同样的方法,三维坐标的转移矩阵可以如下

  1. float A[stateNum][stateNum] ={//transition matrix   
  2.         1,0,0,1,0,0,  
  3.         0,1,0,0,1,0,  
  4.         0,0,1,0,0,1,  
  5.         0,0,0,1,0,0,  
  6.         0,0,0,0,1,0,  
  7.         0,0,0,0,0,1  
  8.     };  

当然并不一定得是1和0


2.预测cvKalmanPredict,然后读出自己需要的值
3.更新观测矩阵
4.更新CvKalman

 只有第一步麻烦些。上述这几步跟代码中的序号对应

 如果你在做tracking,下面的例子或许更有用些。

 

  1. #include <cv.h>   
  2. #include <cxcore.h>   
  3. #include <highgui.h>   
  4.   
  5. #include <cmath>   
  6. #include <vector>   
  7. #include <iostream>   
  8. using namespace std;  
  9.   
  10. const int winHeight=600;  
  11. const int winWidth=800;  
  12.   
  13.   
  14. CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1);  
  15.   
  16. //mouse event callback   
  17. void mouseEvent(int event, int x, int y, int flags, void *param )  
  18. {  
  19.     if (event==CV_EVENT_MOUSEMOVE) {  
  20.         mousePosition=cvPoint(x,y);  
  21.     }  
  22. }  
  23.   
  24. int main (void)  
  25. {  
  26.     //1.kalman filter setup   
  27.     const int stateNum=4;  
  28.     const int measureNum=2;  
  29.     CvKalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)   
  30.     CvMat* process_noise = cvCreateMat( stateNum, 1, CV_32FC1 );  
  31.     CvMat* measurement = cvCreateMat( measureNum, 1, CV_32FC1 );//measurement(x,y)   
  32.     CvRNG rng = cvRNG(-1);  
  33.     float A[stateNum][stateNum] ={//transition matrix   
  34.         1,0,1,0,  
  35.         0,1,0,1,  
  36.         0,0,1,0,  
  37.         0,0,0,1  
  38.     };  
  39.   
  40.     memcpy( kalman->transition_matrix->data.fl,A,sizeof(A));  
  41.     cvSetIdentity(kalman->measurement_matrix,cvRealScalar(1) );  
  42.     cvSetIdentity(kalman->process_noise_cov,cvRealScalar(1e-5));  
  43.     cvSetIdentity(kalman->measurement_noise_cov,cvRealScalar(1e-1));  
  44.     cvSetIdentity(kalman->error_cov_post,cvRealScalar(1));  
  45.     //initialize post state of kalman filter at random   
  46.     cvRandArr(&rng,kalman->state_post,CV_RAND_UNI,cvRealScalar(0),cvRealScalar(winHeight>winWidth?winWidth:winHeight));  
  47.   
  48.     CvFont font;  
  49.     cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);  
  50.   
  51.     cvNamedWindow("kalman");  
  52.     cvSetMouseCallback("kalman",mouseEvent);  
  53.     IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3);  
  54.     while (1){  
  55.         //2.kalman prediction   
  56.         const CvMat* prediction=cvKalmanPredict(kalman,0);  
  57.         CvPoint predict_pt=cvPoint((int)prediction->data.fl[0],(int)prediction->data.fl[1]);  
  58.   
  59.         //3.update measurement   
  60.         measurement->data.fl[0]=(float)mousePosition.x;  
  61.         measurement->data.fl[1]=(float)mousePosition.y;  
  62.   
  63.         //4.update   
  64.         cvKalmanCorrect( kalman, measurement );       
  65.   
  66.         //draw    
  67.         cvSet(img,cvScalar(255,255,255,0));  
  68.         cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green   
  69.         cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red   
  70.         char buf[256];  
  71.         sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);  
  72.         cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0));  
  73.         sprintf_s(buf,256,"current position :(%3d,%3d)",mousePosition.x,mousePosition.y);  
  74.         cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0));  
  75.           
  76.         cvShowImage("kalman", img);  
  77.         int key=cvWaitKey(3);  
  78.         if (key==27){//esc      
  79.             break;     
  80.         }  
  81.     }        
  82.   
  83.     cvReleaseImage(&img);  
  84.     cvReleaseKalman(&kalman);  
  85.     return 0;  
  86. }  

 

kalman filter 视频演示:

http://v.youku.com/v_show/id_XMjU4MzEyODky.html

 

demo snapshot:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值