康耐视 VisionPro CogPatInspectTool(对比)工具

CogPatInspectTool工具使用PatMax检测缺陷(缺陷被定义为运行期间图像中超出正常预期的图像差别的任何变化),缺陷可能是物体遗失(阻塞)或者多余(杂乱),原理是通过PMAlign工具实现,用训练图片和当前输入图片进行对比从而得到缺陷。

基本步骤:

  1. 训练基准图案
  2. 训练检查图案
  3. 设置运行期间参数
  4. 运行PatInspect
  5. 从PatInspect中萃取结果或者使用其他视觉工具在差别图像上执行进一步的分析

使用场景:

例如印刷字符检测、部分缺失或者明暗变换、激光打标内容检测等。

添加图片与工具

### VisionPro 缺陷检测工具概述 VisionPro 提供了一套全面的缺陷检测解决方案,旨在帮助工程师和开发者高效地识别并处理图像中的各种异常情况。通过集成多种先进的算法和技术,VisionPro缺陷检测工具能够满足不同工业环境下的需求。 #### 功能介绍 CogPatInspectToolVisionPro 中专门用于图案匹配和缺陷检测的强大工具[^2]。此工具不仅支持精确的位置校正,还能够在复杂背景下有效识别微小瑕疵。为了提高准确性,在实际应用中通常会配合 CogPMAlignTool 工具一起使用,后者负责计算两幅图片间的相对位置变化,从而使得前者可以在忽略姿态差异的情况下专注于缺陷分析。 #### 使用方法 当利用 CogPatInspectTool 进行缺陷检测时: 1. **加载模板** - 将标准无瑕样本作为模板输入给定系统。 2. **调整参数设置** - 设置合适的灵敏度和其他必要选项以适应具体任务的要求。 3. **执行对比操作** - 输入待测样品图像,并启动比较过程;此时软件会自动完成两者间几何变换补偿工作。 4. **获取结果反馈** - 查看最终报告,了解是否存在任何不符合预期之处及其严重程度评估。 ```python from visionpro import CogPatInspectTool, CogPMAlignTool # 初始化工具实例 pat_inspect_tool = CogPatInspectTool() pm_align_tool = CogPMAlignTool() # 加载模板图像 template_image_path = "path/to/template/image" pat_inspect_tool.load_template(template_image_path) # 执行对齐与检测 test_image_path = "path/to/test/image" alignment_result = pm_align_tool.align_images(template_image_path, test_image_path) defects_report = pat_inspect_tool.inspect_with_alignment(test_image_path, alignment_result) print(defects_report) ``` #### 应用场景 这类技术广泛应用于制造业质量控制环节,比如电子元件表面组装工艺后的焊点检查、印刷电路板上的元器件缺失扫描等场合。此外,在食品加工行业里也可以用来监控产品外观的一致性和完整性,确保每一件出厂商品都达到既定的标准。 #### 下载安装配置指南 对于希望深入了解或试用 VisionPro 及其相关插件(如 BeadInspect),可以从官方资源库获取最新版本的应用程序包[^1]。按照提供的文档指引完成本地部署之后即可开始探索更多可能性。记得定期访问项目主页查看更新日志以便及时掌握新特性发布动态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值