Diffusers 使用 LoRA

使用diffusers 加载 LoRA,实现文生图功能。摘自 diffusers文档。
模型可以根据名称去modelscope找对应资源下载。使用的时候需要替换成具体路径。虽然modelscope和diffusers都使用了模型id,但是并不能通用。
不同的LoRA对应了不同的“trigger” words,在prompt中加入这个“trigger” words才能生成正确的结果。
比如使用了toy-face的LoRA模型,那么就要在prompt加入“toy face”。

基础应用

from diffusers import DiffusionPipeline
import torch

pipe_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(pipe_id, torch_dtype=torch.float16).to("cuda")

#模型下载
#from modelscope import snapshot_download
#model_dir = snapshot_download('SDXL-LoRA/CiroN2022-toy-face')
#加载lora
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
# 加入 “toy face”
prompt = "toy_face of a hacker with a hoodie"
lora_scale = 0.9
image = pipe(
    prompt, num_inference_steps=30, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0)
).images[0]
image

指定LoRA

可以再加载另一个模型,pipe.set_adapters() 函数确定使用哪个模型。不同的模型根据adapter_name来区分。

pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipe.set_adapters("pixel")

prompt = "a hacker with a hoodie, pixel art"
image = pipe(
    prompt, num_inference_steps=30, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0)
).images[0]
image

同时使用多个LoRA

也可以同时使用,adapter_weights设置不同的权重,prompt也应该包括全部的“trigger” words。

pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
prompt = "toy_face of a hacker with a hoodie, pixel art"
image = pipe(
    prompt, num_inference_steps=30, cross_attention_kwargs={"scale": 1.0}, generator=torch.manual_seed(0)
).images[0]
image

在这里插入图片描述

细节控制

更准确的控制LoRA的影响强度。unet一般包括down、mid、up,不同的部分对图片的细节、纹理、风格等影响不同。

pipe.enable_lora()  # enable lora again, after we disabled it above
prompt = "toy_face of a hacker with a hoodie, pixel art"
adapter_weight_scales = { "unet": { "down": 1, "mid": 0, "up": 0} }
pipe.set_adapters("pixel", adapter_weight_scales)
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image

从左到右分别对应{ “down”: 1, “mid”: 0, “up”: 0},{ “down”: 0, “mid”: 1, “up”: 0},{ “down”: 0, “mid”: 0, “up”: 1}
在这里插入图片描述

更细粒度的控制。要根据具体的模型结构,不同的模型结构不同。

adapter_weight_scales_toy = 0.5
adapter_weight_scales_pixel = {
    "unet": {
        "down": 0.9,  # all transformers in the down-part will use scale 0.9
        # "mid"  # because, in this example, "mid" is not given, all transformers in the mid part will use the default scale 1.0
        "up": {
            "block_0": 0.6,  # all 3 transformers in the 0th block in the up-part will use scale 0.6
            "block_1": [0.4, 0.8, 1.0],  # the 3 transformers in the 1st block in the up-part will use scales 0.4, 0.8 and 1.0 respectively
        }
    }
}
pipe.set_adapters(["toy", "pixel"], [adapter_weight_scales_toy, adapter_weight_scales_pixel])
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image

在这里插入图片描述

常用函数

#不使用
pipe.disable_lora()
#使用
pipe.enable_lora()
#正在使用的
pipe.get_active_adapters()
#列表
pipe.get_list_adapters()
#删除
pipe.delete_adapters("toy")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值