经典词向量模型总结

本文概述了经典的词向量模型,包括Word2vec的skip-gram和CBOW区别,以及其相比简单神经网络的优势。接着提到了GloVe、ELMo和openAI GPT,但详细内容见作者的其他博客。
摘要由CSDN通过智能技术生成

目录

一.Word2vec

二、GloVe

三、ELMo

四、openAI GPT

五、BERT


一.Word2vec(详见我的另一篇博客)

1.skip-gram和CBOW的区别

Word2Vec主要有skip-gram和CBOW两种模型。skip-gram是给定input word来预测上下文,比较适合用于大规模的数据集上。cbow是给定上下文,来预测input word,比较适合用于小规模的数据集上,能够对很多的分布式信息进行平滑处理。

2.相比于简单的神经网络模型的优点

相比于简单的神经网络模型,word2vec在输入层的维数要更少(简单的NN是通过拼接上下文的词向量,而word2vec中的CBOW通过累加求和,skip-gram则不用),而且层数更少(简单NN有隐层,而word2vec无隐层),复杂度降低(输出改成了层次化的softmax,而不是简单的softmax),增加了负采样,提升性能。

3.词嵌入应该怎样获取
可以看到训练过程有两个词向量矩阵,有两种处理办法:(1)将两个矩阵相加(2)将两个矩阵拼接,扩展词向量的维度

4.word2vec为什么能学习出语义相似的词语?
 word2vec是基于上下文的语言模型,而现代统计NLP最成功的的思想之一就是通过一个单词的上下文可以得到它的语义。如果一个词的上下文和另一个词的上下文相似,则说明它们的语义是相似的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值