怎么构建Agent?我写了一个教程(含代码)

有句非洲谚语很有名:一个人可以走得很快,一群人才能走得更远。

还有句话是:没有人能在所有领域都成为专家,我觉得这两句话说的是一个道理。团队合作,分工明确,大家齐心协力,各尽其职才能把事情做好。

同样的道理,用在 LLM 上也很合适。我们没必要让一个 LLM 去搞定所有复杂的任务。我们可以把不同的 LLM 或者 AI Agent 组合起来,让每个 Agent 都专注于它最擅长的领域。这样,大家各司其职,效率和效果都会更好。

这种方式可以构建出一个更加健壮的系统,生产出来的东西质量也更高,结果也更可靠。

01

系统整体工作流程

在进入编码部分之前,我们先对本文构建的系统的主要组件有一个清晰的理解。

图片

自主 AI Agent 工作流程

这个工作流程包含四个 Agent,每个 Agent 都有专门的技能。

  • 首先,用户的请求被提交到系统。
  • Agent 1 或视频分析器在互联网上进行深入的研究,使用 YouTube 频道搜索等外部工具查找与用户请求相关的信息。该 Agent 的结果会发送给下一个 Agent 进行进一步处理。
  • Agent 2 或博客文章撰写者利用前一个 Agent 的结果撰写一篇全面的博客文章。
  • 类似地,Agent 3 和 Agent 4 分别创建吸引人的 LinkedIn 帖子和推文。
  • Agent2、Agent3 和 Agent 4 的回应会分别保存到不同的 Markdown 文件中,供最终用户使用。

02

为什么我们要关注 AI Agent 而不是单个 LLM?

我们都知道这儿的任务是指一个整体任务,意味着 LLM 被要求完成一个单一的目标,即数据提取。

这种方法在处理更复杂、多步骤的任务时的局限性变得很明显。下面列举了其中的一些局限性:

  • 任务执行的灵活性

  • 单个提示的 LLM 需要为每个任务仔细编写提示词,当任务需求发生变化时,更新这些提示可能会变得麻烦。

  • AI Agent 将这些复杂性分解为子任务,能够适应任务变化,而不需要在提示词工程上投入大量精力。

  • 任务的连续性和上下文保留

  • 单个提示的 LLM 可能会丢失之前互动中的重要上下文。这是因为它们主要在单个对话回合的限制内运行。

  • AI Agent 则具备在不同互动之间保持上下文的能力,每个 Agent 可以参考前一个 Agent 的响应来完成它们预期的任务。

  • 专业化和互动

  • 单个提示的 LLM 可能在经过大量微调后具备专业领域的知识,但这可能既耗时又昂贵。

  • 另一方面,AI Agent 可以设计为由多个专门模型组成的团队,每个模型专注于一个特定任务,例如研究者、博客撰写者、社交媒体专家。

  • 互联网访问

  • 单个 LLM 依赖于预定义的知识库,这不可能总是最新的,导致产生幻觉或信息访问有限。

  • AI Agent 则可以访问互联网,使它们能够提供更为实时的信息,从而做出更好的决策。

03

构建内容创建工作流程

在本节中,我们将探讨如何利用智能体工作流程来创建一个系统,该系统在对用户主题进行深入研究后,撰写博客文章、LinkedIn 内容、Twitter 帖子。

代码结构如下图所示:

在这里插入图片描述

  • project 文件夹是根文件夹,包含 data 文件夹和 notebook。
  • data 文件夹目前是空的,但在整个工作流程执行后应该包含以下三个 Markdown 文件:blog-post.md、linkedin-post.md 和 tweet.md。
  • 每个 Markdown 文件都包含相应 Agent 完成任务的结果。

04

Agent 的创建及其角色与任务

现在我们已经探讨了每个 Agent 的角色,接下来我们看看如何实际创建它们,以及它们的角色和任务。

在此之前,让我们设置一些前提条件,以便更好地实现这些角色和任务。

前提条件

代码是在 Google Colab notebook 中运行的,我们的用例只需要两个库:openai 和 crewai[tools],可以通过以下方式安装它们。
在这里插入图片描述
成功安装库后,下一步是导入以下必要的模块:
在这里插入图片描述
每个 Agent 都利用了 OpenAI 的 GPT-4o 模型,我们需要通过以下方式设置访问模型的权限:

在这里插入图片描述

图片

环境变量及其值

  • 首先,我们使用内置的 userdata.get 函数从 Google Colab Secrets 中获取 OPEN_AI_KEY 和 GPT_MODEL。
  • 然后,我们使用 os.environ 函数设置 OPEN AI KEY 和 GPT-4o 模型。
  • 在完成上述两步后,使用该模型创建 Agent 应该不会有任何问题。

Agent 及其角色

通过 Agent 类,我们可以通过提供以下属性来创建一个 Agent:role,goal,backstory 和 memory。

只有 Agent 1 或 Video Analyzer 具有额外的属性:tools 和 allow_delegation。

大多数属性是自解释的,但我们还是来了解它们的具体含义。

  • role 类似于职位名称,定义了 Agent 的具体角色。例如,Agent 1 的角色是主题研究员。
  • goal 告诉 Agent 其角色的具体目标。
  • backstory 进一步详细说明了 Agent 的角色,使其更加具体。
  • memory 属性是一个布尔值。设置为 True 时,允许 Agent 记住、推理并从过去的互动中学习。
  • tools 是 Agent 执行任务时使用的工具列表。
  • allow_delegation 是一个布尔值,表示 Agent 的结果是否必须交给其他 Agent 进一步处理。

现在,让我们开始创建所有 Agent。

但是,在此之前,我们设置需要由第一个 Agent 使用的工具,以探索我的个人 YouTube 频道。

这是通过提供句柄 @techwithzoum 的 YouTubeChannelSearchTool 类实现的。

1、Agent1 — 主题研究员

topic_researcher = Agent(
    role='Topic Researcher',    
    goal='Search for relevant videos on the topic {topic} from the provided YouTube channel',    
    verbose=True,    
    memory=True,    
    backstory='Expert in finding and analyzing relevant content from YouTube channels, specializing in AI, Data Science, Machine Learning, and Generative AI topics.',    
    tools=[youtube_tool],    
    allow_delegation=True
)
  • 我们首先将该 Agent 的角色定义为 Topic Researcher。
  • 然后,我们要求 Agent 使用提供的 {topic} 查找提到该主题的相关视频。
  • 最后,我们将第一个 Agent 定义为使用 YouTube 搜索工具查找和分析关于 AI、数据科学、机器学习和生成式 AI 主题的相关内容的专家。

在当前 Agent 定义中,后续 Agent 的定义与此相似,只是属性值有所不同。一旦理解了这一点,后续 Agent 的定义就不再需要解释。

2、Agent 2 — 博客撰写者

blog_writer = Agent(
    role='Blog Writer',    
    goal='Write a comprehensive blog post from the transcription provided by the Topic Researcher, covering all necessary sections',    
    verbose=True,    
    memory=True,    
    backstory='Experienced in creating in-depth, well-structured blog posts that explain technical concepts clearly and engage readers from introduction to conclusion.',    
    allow_delegation=False
)

3、Agent 3 — LinkedIn 帖子创建者

# LinkedIn Post Agentlinkedin_post_agent = Agent(
      role='LinkedIn Post Creator',    
      goal='Create a concise LinkedIn post summary from the transcription provided by the Topic Researcher.',    
      verbose=True,    
      memory=True,    
      backstory='Expert in crafting engaging LinkedIn posts that summarize complex topics and include trending hashtags for maximum visibility.',    
      allow_delegation=False
)

4、智能体 4 — Twitter 帖子创建者

twitter_agent = Agent(
    role='Twitter Content Creator',    
    goal='Create a short tweet from the transcription provided by the Topic Researcher that capture key points and insights',    
    verbose=True,    
    memory=True,    
    backstory='Specializes in distilling complex information into concise, impactful tweets that resonate with a tech-savvy audience.',    
    allow_delegation=False
)

我们注意到最后三个智能体都不再委托任务,这是因为它们的结果不需要被其他 Agent 处理。

完美!现在我们的 Agent 已经准备好了解对它们的期望了,这是通过 Task 类来实现的。

任务

人类在接到任务指示后会执行任务来交付结果。

同样,Agent 也需要执行任务并交付结果,所需的属性如下:

  • description 对应需要 Agent 执行的任务的明确描述。描述越清晰,模型的输出就越好。
  • expected_output 是对 Agent 预期结果的文本描述。
  • agent 是执行特定任务的 Agent 占位符。
  • tools 类似于角色定义部分,并非每个 Agent 都使用工具。在我们的用例中,只有主题研究员使用了工具。
  • output_file 是文件名及其格式。仅对需要将任务结果保存为文件的 Agent 指定,例如 Markdown 文件,博客撰写者的文件名可以是 blog-post。md。

接下来,我们来看这些任务的 Python 实现。

1、Agent 1 — 主题研究员

research_task = Task(
    description="Identify and analyze videos on the topic {topic} from the specified YouTube channel.",    
    expected_output="A complete word by word report on the most relevant video found on the topic {topic}.",    
    agent=topic_researcher,    
    tools=[youtube_tool]
)

2、Agent 2 — 博客撰写者

blog_writing_task = Task(
    description=""" Write a comprehensive blog post based on the transcription provided by the Topic Researcher.          
                    The article must include an introduction , step-by-step guides, and conclusion.                    
                    The overall content must be about 1200 words long.""",    
    expected_output="A markdown-formatted of the blog",    
    agent=blog_writer,    
    output_file='./data/blog-post.md'
)

3、Agent 3 — LinkedIn 帖子创建者

linkedin_post_task = Task(
    description="Create a LinkedIn post summarizing the key points from the transcription provided by the Topic Researcher, including relevant hashtags.",    
    expected_output="A markdown-formatted of the LinkedIn post",    
    agent=linkedin_post_agent,    
    output_file='./data/linkedin-post.md'
)

4、Agent 4 — Twitter 帖子创建者

twitter_task = Task(
    description="Create a tweet from the transcription provided by the Topic Researcher, including relevant hastags.",    
    expected_output="A markdown-formatted of the Twitter post",    
    agent=twitter_agent,    
    output_file='./data/tweets.md'
)

对于每个 Agent,属性都是自解释的,其结果为:

  • 第一个 Agent 生成的结果是供后三个 Agent 使用的原始文本数据。
  • 第二个 Agent 的结果是一个名为 blog-post.md 的 Markdown 文件。
  • 第三个 Agent 的结果是一个名为 linkedin-post.md 的 Markdown 文件。
  • 最后一个 Agent 的结果也是一个名为 tweets.md 的 Markdown 文件。

05

让 Agent 开始工作

最后,我们协调 Agent 团队,按照如下方式执行任务:

my_crew = Crew(
    agents=[topic_researcher, linkedin_post_agent, twitter_agent, blog_writer],    
    tasks=[research_task, linkedin_post_task, twitter_task, blog_writing_task],    
    verbose=True,    
    process=Process.sequential,    
    memory=True,    
    cache=True,    
    max_rpm=100,    
    share_crew=True
)

  • agents 对应于我们所有 Agent 的列表。
  • tasks 是每个 Agent 需要执行的任务列表。
  • 我们将 verbose 设置为 True 以查看完整的执行跟踪。
  • max_rpm 是我们的团队为避免速率限制而每分钟最多可以执行的请求数。
  • 最后,share_crew 表示 Agent 共享资源来执行任务。这对应于第一个 Agent 与其他 Agent 共享其响应。

在协调了 Agent 之后,是时候通过 kickoff 函数触发它们了,该函数接收一个输入字典作为参数。在这里,我们搜索的是我录制的关于 GPT3.5 Turbo 微调与图形界面的一个视频。

topic_of_interest = 'GPT3.5 Turbo Fine-tuning and Graphical Interface'
result = my_crew.kickoff(inputs={'topic': topic_of_interest})

成功执行上述代码将生成我们上面指定的三个 Markdown 文件。

以下是每个文件内容的结果显示。作为录制视频的人,这些内容与教程中涉及的内容完全一致。

图片

博客 Agent 未能提供百分之百的分步指南,用户在执行代码时可能会遇到问题,但它提供了对教程范围的极好理解。

对于 LinkedIn 和 Twitter 帖子,结果非常出色!

你可以在下面链接中查看所有文件的内容。

https://github.com/keitazoumana/LLMs/tree/main/ai_agents_outputs

06

评估 Agent

我对 Agent 的上述评估基于我对内容的个人熟悉程度。然而,在投产之前,需要更客观且可扩展的评估方法。

以下是一些有效评估这些 AI Agent 的策略。

  • 基准测试可以用来评估每个 Agent 在不同任务上的表现,使用已建立的数据集如 GLUE 和 FLASK,可以进行与不同最先进模型的标准化比较。
  • 事实准确性测量评估 Agent 在多个领域提供事实性回答的能力。
  • 上下文感知相关性评分可以用来量化 Agent 的响应与给定提示词的对齐程度。

可以利用多个框架来执行这些评估,其中包括:

  • DeepEval,这是一个开源工具,用于量化 LLM 在不同指标上的性能。
  • MMLU(大规模多任务语言理解)是一个测试模型在零样本和单样本设置下的多学科知识的框架。
  • OpenAI evals 也是一个用于评估 LLM 或任何基于 LLM 系统的框架。

07

总结

本文简要介绍了如何利用 AI Agent 有效完成高级任务,而不是让一个大语言模型单打独斗。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值