R对数秩检验(log rank test)

对数秩检验是评估两组生存曲线差异的常见方法,常用于生物医学研究。在R中,通过survdiff()函数进行此检验,例如在卵巢癌患者数据集上。结果显示,接受不同治疗的患者的存活率差异在统计学上不显著,p值为0.3,未能达到0.05的显著性水平。此外,可以使用生存曲线可视化数据,尽管视觉上可能有差异,但log rank test未发现显著差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R对数秩检验(log rank test)

对数秩检验(log rank test )是比较两组生存曲线的最常用方法。

H0:两组生存率无差异。

Ha:两组生存率有差异。

如果检验的P值小于某个显著性水平(如α=0.05),那么我们可以拒绝零假设,并得出结论:有足够的证据表明两组之间的存活率存在差异。

为了在R中执行时序检验,我们可以使用生存包中的survdiff()函数,该函数使用以下语法:

survdiff(Surv(time, status) ~ predictors, data)

此函数返回一个卡方检验统计量和相应的p值。

R中对数秩检验

我们将使用生存包中的卵巢数据集。该

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值