createEigenFaceRecognizer
-
C++:
Ptr<FaceRecognizer>
createEigenFaceRecognizer
(int
num_components=0, double
threshold=DBL_MAX
)
-
Parameters: - num_components – The number of components (read: Eigenfaces) kept for this Prinicpal Component Analysis. As a hint: There’s no rule how many components (read: Eigenfaces) should be kept for good reconstruction capabilities. It is based on your input data, so experiment with the number. Keeping 80 components should almost always be sufficient.
- threshold – The threshold applied in the prediciton.
Notes:
- Training and prediction must be done on grayscale images, use cvtColor() to convert between the color spaces.
- THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL SIZE. (caps-lock, because I got so many mails asking for this). You have to make sure your input data has the correct shape, else a meaningful exception is thrown. Use resize() to resize the images.
- This model does not support updating.
Model internal data:
- num_components see createEigenFaceRecognizer().
- threshold see createEigenFaceRecognizer().
- eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
- eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their eigenvalue).
- mean The sample mean calculated from the training data.
- projections The projections of the training data.
- labels The threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1.