环境内容:
pytorch:1.7.1
cuda:11.0
torchvision:0.8.2
环境配置:
一、Anaconda的配置
安装方式(一)
如果具有可视化界面的系统,可以直接进入首先登录Anaconda的官网https://www.anaconda.com/download#downloads。直接下载对应安装包就可以。
安装方式(二)
清华镜像源连接:Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
选择一个适合自己的通过wget下载
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh
下载完成后通过以下命令进行安装
sh Anaconda3-5.2.0-Linux-x86_64.sh
之后疯狂按住回车就行了,直到出现了需要输入yes的地方就要开始小心了!!!!
这里是anaconda的安装目录,直接回车的话就安装在/home/用户名/anaconda3中的, 我这里改了一下安装路径,然后回车,等待安装结束
安装结束,会问你要不要把anaconda3的安装路径写进环境变量,我这里先选no
(我建议一般选yes会少很多麻烦,喜欢折腾的同学选no)
然后它会告诉你环境变量该怎么写
把这一句先保存一下,随后写进环境变量,因为我这里的环境变量文件不在home目录下, 所以需要自己创建一下
下面这个东西它问你要不要安装VSCode, 本人不用这个东西,直接输入no
到此的话Anaconda就安装完毕了。
接下来来配置环境变量,如果上面写入了环境变量就不要配置了。
配置环境变量步骤:
①打开.bashrc文件:
vi ~/.bashrc
②在.bashrc文件里面输入anconda的bin目录路径,如:
export PATH="/home/xxx/anaconda3/bin:$PATH"
③刷新环境变量
配置了环境变量并不会生效,需要刷新才会生效
source ~/.bashrc
验证安装是否成功
查看anconda版本,验证是否安装成功。
conda --version
二、Cudnn和Cuda的下载和安装
注意事项:
Cudnn与Cuda需要配套下载,而具体安装什么型号取决与你的显卡型号,在下载Cudnn和Cuda前一定要仔细查询好。
CUDA历史版本下载地址:
CUDA Toolkit Archive | NVIDIA Developer
cuDNN历史版本下载地址:
cuDNN Archive | NVIDIA Developer
其中在cuDNN历史版本下载页面可以看到与CUDA的版本对应关系。
官网下载:
cuda11.0官网地址:CUDA Toolkit 11.0 Download | NVIDIA Developer
cudnn8.0.5.39官网地址:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer
指令下载:
wget http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
Cudnn和Cuda的安装
Cuda安装
在文件夹打开终端,输入以下命令安装CDUA:
sudo sh cuda_11.0.2_450.51.05_linux.run
因为已经安装显卡驱动了,所以这一步不再选择Driver,之后选择install进行Cuda的安装即可。
安装完成后,还需要将CUDA信息添加到~/.bashrc中,因此我们这样做。使用gedit或者vim打开.bashrc文件。
gedit ~/.bashrc
然后在文件末尾添加上下述代码,此时环境变量已经添加。
export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64
此时CUDA已经安装完毕了,需要进一步安装Cudnn。
Cudnn安装
依然打开终端,使用下述指令解压Cudnn文件。如果是zip文件就使用unzip,如果是tgz文件就使用tar。
unzip cudnn-11.0-linux-x64-v8.0.5.39.zip
tar -xvf cudnn-11.0-linux-x64-v8.0.5.39.tgz
解压完成后需要将cudnn文件夹下的文件复制到到/usr/local/cuda-11.0/lib64/和/usr/local/cuda-11.0/include/中。
进入cudnn文件夹,使用cp命令进行复制。
cp cuda/lib64/* /usr/local/cuda-11.0/lib64/
cp cuda/include/* /usr/local/cuda-11.0/include/
此时cudnn也安装完毕。
配置pytorch-gpu环境
注意事项:
在选择配置pytorch-gpu版本前要注意自己的cuda和cudnn的版本信息,这三者也都是配套的!!
下面附上下载链接,其中在下载链接也能够看到这三者的对应关系:
Previous PyTorch Versions | PyTorch
pytorch-gpu环境的创建与激活
ctrl+alt+T,在命令提示符内输入以下命令:
conda create –n pytorch-gpu python=3.7
conda activate pytorch-gpu
这里一共存在两条指令:
前面一条指令用于创建一个名为pytorch-gpu的环境,该环境的python版本为3.7。
后面一条指令用于激活一个名为pytorch-gpu的环境。
pytorch-gpu库的安装
这里我们选择1.7.0版本的pytorch-gpu
由于我们的CUDA版本是11.0 所以我们选择如下命令安装:
# CUDA 11.0
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorc
至此配置环境就结束了!!!!!*★,°*:.☆( ̄▽ ̄)/$:*.°★* 。