深度学习环境配置——Ubuntu下的torch==1.7.1环境配置

本文详细介绍了如何在Ubuntu系统中安装Anaconda,包括通过官网和清华镜像源下载,以及配置环境变量。接着,文章指导读者下载并安装CUDA11.0和cuDNN8.0.5,强调了两者版本的匹配性。最后,文章提供了创建和激活PyTorch-GPU环境的步骤,特别提到了匹配CUDA版本安装PyTorch1.7.1和torchvision0.8.2。
摘要由CSDN通过智能技术生成

环境内容:

pytorch:1.7.1

cuda:11.0
torchvision:0.8.2

环境配置:

一、Anaconda的配置

安装方式(一)

如果具有可视化界面的系统,可以直接进入首先登录Anaconda的官网https://www.anaconda.com/download#downloads。直接下载对应安装包就可以。

安装方式(二)

清华镜像源连接:Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

选择一个适合自己的通过wget下载

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh

下载完成后通过以下命令进行安装

sh Anaconda3-5.2.0-Linux-x86_64.sh

之后疯狂按住回车就行了,直到出现了需要输入yes的地方就要开始小心了!!!!

这里是anaconda的安装目录,直接回车的话就安装在/home/用户名/anaconda3中的, 我这里改了一下安装路径,然后回车,等待安装结束

 

安装结束,会问你要不要把anaconda3的安装路径写进环境变量,我这里先选no

(我建议一般选yes会少很多麻烦,喜欢折腾的同学选no)

 
然后它会告诉你环境变量该怎么写


把这一句先保存一下,随后写进环境变量,因为我这里的环境变量文件不在home目录下, 所以需要自己创建一下

下面这个东西它问你要不要安装VSCode, 本人不用这个东西,直接输入no

到此的话Anaconda就安装完毕了。

接下来来配置环境变量,如果上面写入了环境变量就不要配置了。

配置环境变量步骤:

①打开.bashrc文件:

vi ~/.bashrc

②在.bashrc文件里面输入anconda的bin目录路径,如:

 export PATH="/home/xxx/anaconda3/bin:$PATH"

③刷新环境变量

配置了环境变量并不会生效,需要刷新才会生效

source ~/.bashrc

验证安装是否成功

查看anconda版本,验证是否安装成功。

conda --version

二、Cudnn和Cuda的下载和安装

注意事项:

Cudnn与Cuda需要配套下载,而具体安装什么型号取决与你的显卡型号,在下载Cudnn和Cuda前一定要仔细查询好。

CUDA历史版本下载地址:

CUDA Toolkit Archive | NVIDIA Developer
cuDNN历史版本下载地址:

cuDNN Archive | NVIDIA Developer

其中在cuDNN历史版本下载页面可以看到与CUDA的版本对应关系。

 

官网下载:

cuda11.0官网地址:CUDA Toolkit 11.0 Download | NVIDIA Developer

cudnn8.0.5.39官网地址:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer

指令下载:

wget http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run

Cudnn和Cuda的安装

Cuda安装

在文件夹打开终端,输入以下命令安装CDUA:

sudo sh cuda_11.0.2_450.51.05_linux.run

因为已经安装显卡驱动了,所以这一步不再选择Driver,之后选择install进行Cuda的安装即可。

安装完成后,还需要将CUDA信息添加到~/.bashrc中,因此我们这样做。使用gedit或者vim打开.bashrc文件。

gedit ~/.bashrc

然后在文件末尾添加上下述代码,此时环境变量已经添加。

export PATH=$PATH:/usr/local/cuda/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64

export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64

此时CUDA已经安装完毕了,需要进一步安装Cudnn。

Cudnn安装

依然打开终端,使用下述指令解压Cudnn文件。如果是zip文件就使用unzip,如果是tgz文件就使用tar。

unzip cudnn-11.0-linux-x64-v8.0.5.39.zip

tar -xvf cudnn-11.0-linux-x64-v8.0.5.39.tgz

解压完成后需要将cudnn文件夹下的文件复制到到/usr/local/cuda-11.0/lib64/和/usr/local/cuda-11.0/include/中。

进入cudnn文件夹,使用cp命令进行复制。

cp cuda/lib64/* /usr/local/cuda-11.0/lib64/

cp cuda/include/* /usr/local/cuda-11.0/include/

此时cudnn也安装完毕。

配置pytorch-gpu环境

注意事项:

在选择配置pytorch-gpu版本前要注意自己的cuda和cudnn的版本信息,这三者也都是配套的!!

下面附上下载链接,其中在下载链接也能够看到这三者的对应关系:

Previous PyTorch Versions | PyTorch

pytorch-gpu环境的创建与激活

ctrl+alt+T,在命令提示符内输入以下命令:

conda create –n pytorch-gpu python=3.7

conda activate pytorch-gpu

这里一共存在两条指令:
前面一条指令用于创建一个名为pytorch-gpu的环境,该环境的python版本为3.7。
后面一条指令用于激活一个名为pytorch-gpu的环境。

pytorch-gpu库的安装

这里我们选择1.7.0版本的pytorch-gpu

 

由于我们的CUDA版本是11.0 所以我们选择如下命令安装:

# CUDA 11.0
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorc

至此配置环境就结束了!!!!!*★,°*:.☆( ̄▽ ̄)/$:*.°★* 。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值