【openAI库】Python语言openAI库详解:从入门到精通(从0到1手把手教程)

💥 欢迎来到我的博客!很高兴能在这里与您相遇!
请添加图片描述

💥 期待与您一起探索AI、共同成长。✨ 立即订阅本专栏,加入我们的旅程,共同发现更多精彩!🌟

在人工智能(AI)领域,OpenAI无疑是全球最受瞩目的机构之一。它推出的GPT系列模型、DALL·E等创新技术,正在深刻改变各行各业。作为Python开发者,我们该如何快速上手并高效利用OpenAI的API,成为了提升个人竞争力的关键。
请添加图片描述

本文将带你从零开始,深入解析Python语言中的openAI库,助你掌握AI开发的核心工具,成为AI领域的专家。


在这里插入图片描述

一、什么是openAI库?它能为开发者带来什么?

1.1 openAI库简介

openAI库是OpenAI官方提供的Python SDK,旨在帮助开发者轻松调用OpenAI的API,实现自然语言处理(NLP)、图像生成、代码补全等AI功能。通过openAI库,开发者可以快速集成GPT、DALL·E等先进模型,构建智能应用。

1.2 openAI库的核心

  • 简化开发流程:openAI库封装了复杂的API调用逻辑
  • 支持多种模型:包括GPT-3、GPT-4、Codex等,满足不同场景需求。
  • 灵活的参数配置:开发者可以通过调整参数,控制模型的输出质量、风格等。
  • 高效的数据处理:支持批量请求、流式响应等功能,提升开发效率。

二、openAI库的安装和配置

2.1 安装openAI库

在开始使用openAI库之前,首先需要安装它。可以通过以下命令安装最新版本的openAI库:

pip install openai

2.2 配置API KEY

要使用openAI库,你需要一个OpenAI API KEY。以下是配置步骤:

  1. 之前写过CSDN的文章,教你如何获取OpenAI API KEY的教程,你可以前往这里查看: 【OpenAI】获取OpenAI API Key的多种方式全攻略:从入门到精通
  2. 注意!注意!注意! Python代码中如果要设置base_urlapi_key。那么在配置base_url的时候你要注意一点,那就是在OpenAI库里面,Python的base_url后面,自带了v1的参数。所以base_url后面也要加上v1,如下代码:

from openai import OpenAI
client = OpenAI(
    api_key="这里是获取的api_key",
    base_url="https://api.aihao123.cn/luomacode-api/open-api/v1"
)

response = client.chat.completions.create(
    messages=[
    	# 把用户提示词传进来content
        {'role': 'user', 'content': "1+1等于几?帮我说列出详细步骤。"},
    ],
    model='gpt-3.5-turbo',  # 调用的模型
    stream=True  # True 是流逝返回,False是非流逝返回
)

# stream=False的时候,打开这个,启用非流式返回
# print(response.choices[0].message.content)

# stream=True的时候,启用流示返回
for chunk in response:
    print(chunk.choices[0].delta.content, end="", flush=True)

在这里插入图片描述


三、openAI库的核心功能详解

3.1 文本生成:GPT模型的使用

GPT(Generative Pre-trained Transformer)是OpenAI最著名的模型之一,广泛应用于文本生成、对话系统等场景。以下是一个简单的文本生成示例:

from openai import OpenAI

client = OpenAI(
    api_key="这里是获取的api_key",
    base_url="https://api.aihao123.cn/luomacode-api/open-api/v1"

)
response = client.chat.completions.create(
    messages=[
        {'role': 'user', 'content': "写一篇关于人工智能的文章。"}, ],
    model='gpt-3.5-turbo',
    # stream=False
    stream=False,
    max_tokens=500
)
print(response.choices[0].message.content)

# for chunk in response:
#     print(chunk.choices[0].delta.content, end="", flush=True)

参数说明

  • model:指定使用的模型,如gpt-3.5-turbo
  • messages:输入的提示文本。
  • stream:等于False,是非流示返回。
  • max_tokens:生成文本的最大长度。

在这里插入图片描述

3.2 代码补全:Codex模型的使用

Codex是OpenAI专为代码生成优化的模型,支持多种编程语言。以下是一个代码补全示例:

response = client.chat.completions.create(
    messages=[
        {'role': 'user', 'content': "1+1"}, ],
    model='gpt-3.5-turbo',
    # stream=False
    stream=False,
    max_tokens=200
)
print(response.choices[0].message.content)

参数说明

  • response = client.chat.completions.create():这个是代码补全的参数completions

在这里插入图片描述

3.3 图像识别:4O模型的使用

4O模型是OpenAI的大语言模型,可以根据图片生成对应文案。以下是一个图像识别示例:

目标:我要去识别这个图片
请添加图片描述
完整的代码如下:

from openai import OpenAI

client = OpenAI(
    api_key="这里是获取的api_key",
    base_url="https://api.aihao123.cn/luomacode-api/open-api/v1"

)
response = client.chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": [
                {
                    "text": "这是什么?",
                    "type": "text"
                },
                {
                    "image_url": {
                        "url": ""
                    },
                    "type": "image_url"
                }
            ]
        }
    ],
    model='gpt-4o-2024-05-13',
    stream=False,
    max_tokens=200
)

print(response.choices[0].message.content)

在这里插入图片描述

参数说明

  • image_url:参数里面的image_url传入的是Base64,你也可以传入URL,但是传Base64响应会非常的快。这个是我用的转Base64的工具:转Base64
  • 等转完Base64后,在把内容贴到image_url即可。或者你可以直接调用Base64的代码库也可以。

四、openAI库的高级用法

4.1 批量请求与流式响应

为了提高效率,openAI库支持批量请求和流式响应。以下是一个批量请求示例:

response = client.chat.completions.create(
    messages=[
            {'role': 'user', 'content': "10+5"}, {'role': 'user', 'content': "2+1"},],
        model='gpt-3.5-turbo',
        stream=False,
        # stream=True,
        max_tokens=500
    )

print(response.choices[0].message.content)

在这里插入图片描述

4.3 错误处理与重试机制

在实际开发中,可能会遇到API调用失败的情况。以下是一个简单的错误处理示例:

import time
from os import error
from openai import OpenAI

def generate_text(prompt):
    client = OpenAI(
        api_key="这里是获取的api_key",
        base_url="https://api.aihao123.cn/luomacode-api/open-api/v1"

    )
    try:
        response = client.chat.completions.create(
            messages=[
                {'role': 'user', 'content': prompt}, ],
            model='gpt-3.5-turbo',
            # stream=False
            stream=False,
            max_tokens=200
        )
        return response.choices[0].message.content
    except error:
        time.sleep(10)
        return generate_text(prompt)

if __name__ == '__main__':
    prompt = "床前明月光下一句是什么?并且输出完整的解释"
    print(generate_text(prompt))

在这里插入图片描述


五、相关文章

【OpenAI】(一)获取OpenAI API Key的多种方式全攻略:从入门到精通,再到详解教程!!

【VScode】(二)VSCode中的智能AI-GPT编程利器,全面揭秘CodeMoss & ChatGPT中文版

【CodeMoss】(三)集成13种AI大模型(GPT4、o1等)、支持Open API调用、自定义助手、文件上传等强大功能,助您提升工作效率! >>> - CodeMoss & ChatGPT-AI中文版

<think>好的,我现在需要帮助用户解决如何安装OpenAI Python的问题。首先,我得确认用户的需求。用户提到想查找如何安装OpenAI的官方教程和兼容性说明。根据系统指令,我需要用中文回答,结构清晰,并且引用提供的参考信息。 首先,我需要回顾用户提供的引用内容。引用[1]提到官方的项目地址是https://gitcode.com/gh_mirrors/op/openai-python,但看起来这是一个镜像。不过用户可能需要官方的安装方法,但引用[3]和引用[5]都提到OpenAI Python的使用,特别是引用[3]提到ollama的OpenAI迁移,引用[5]提到Responses API和Agents SDK的更新。 但用户的问题是关于安装OpenAI Python的官方教程。根据引用[1],正确的安装方法应该是通过pip安装,比如引用[2]中的例子是安装带embeddings的依赖:pip install openai[embeddings]。这可能是一个特定功能的安装方式,但基础安装应该是pip install openai。 另外,用户提到兼容性说明。引用[4]提到使用Python 3.10版本,这可能是一个兼容性较好的选择。因此,在回答中需要建议Python版本,如3.7及以上,并特别推荐3.10以确保兼容性。 接下来,我需要整理安装步骤。首先,确保Python环境,推荐使用conda创建环境,如引用[4]中的命令:conda create -n llm python=3.10。然后激活环境,再使用pip安装openai。如果需要embeddings功能,可以安装额外依赖,如引用[2]中的pip install openai[embeddings]。 此外,用户可能需要验证安装是否成功,比如导入并检查版本。因此,提供一个简单的测试代码示例会有所帮助,比如打印版本号。 关于官方教程,可能需要引导用户到官方文档,但根据引用[1],项目地址可能是一个镜像,所以可能需要确认正确的官方源。通常,OpenAI Python的官方安装命令是pip install openai,而官方文档可能在https://platform.openai.com/docs/api-reference。 兼容性方面,除了Python版本,还需要注意版本与其他依赖的兼容性,建议使用较新的版本,并定期更新。 现在,我需要将这些信息结构化,分步骤说明安装过程,包括环境配置、安装命令、可选功能安装和验证步骤。同时,要引用相关的引用内容,如引用[2]、[3]、[4]、[5]来支持回答。 最后,按照用户的要求生成相关问题,这些问题应围绕安装过程、兼容性、环境管理以及的功能扩展。</think>### 如何安装OpenAI Python #### 1. **环境准备** - **Python版本要求**:建议使用Python 3.7及以上版本,推荐Python 3.10以获得更好的兼容性[^4]。 - **虚拟环境管理**:可使用Conda或venv创建独立环境,避免依赖冲突: ```bash # 使用Conda创建环境 conda create -n openai_env python=3.10 conda activate openai_env ``` #### 2. **安装OpenAI** - **基础安装**:通过pip安装官方: ```bash pip install openai ``` - **附加功能安装**:如需使用`embeddings`等高级功能,安装扩展依赖: ```bash pip install openai[embeddings] # 包含embeddings工具[^2] ``` #### 3. **验证安装** ```python import openai print(openai.__version__) # 应输出类似"1.0.0"的版本号 ``` #### 4. **兼容性说明** - **Python版本**:3.10已验证兼容性最佳。 - **依赖管理**:若需与其他AI工具(如ollama)集成,可通过ollama的OpenAI兼容实现平滑迁移[^3]。 #### 5. **官方资源** - **项目地址**:GitCode镜像仓(非官方托管):https://gitcode.com/gh_mirrors/op/openai-python[^1] - **最新功能**:关注`Responses API`和`Agents SDK`更新,以支持复杂AI应用开发[^5]。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XinZong-千鑫

在线乞讨,行行好吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值