花书+吴恩达深度学习(十八)迁移学习和多任务学习

本文介绍了深度学习中的迁移学习和多任务学习。迁移学习通过利用已学习任务的知识帮助新任务,常见方法包括重用部分网络权重或仅训练输出层。多任务学习则涉及同时预测多个输出,共享底层特征,适用于任务间有共同表示的情况。
摘要由CSDN通过智能技术生成

目录

0. 前言

1. 迁移学习

2. 多任务学习


如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔~我会非常开心的~

花书+吴恩达深度学习(十八)迁移学习和多任务学习

花书+吴恩达深度学习(十九)构建模型策略(训练模型顺序、偏差方差、数据集划分、数据不匹配)

花书+吴恩达深度学习(二十)构建模型策略(超参数调试、监督预训练)

0. 前言

有时,在构建模型的时候,可以利用多个任务的共性,来更好的构建模型。

本篇主要简要介绍,迁移学习和多任务学习。

1. 迁移学习

迁移学习,顾名思义,将已有的知识迁移至另一个任务。

学习完任务 A 后,利用已学习到的知识,进一步的学习任务 B 。

因为任务 A 低层次的特征通常与任务 B 相似,所以可进行迁移学习。

方法 1:训练完任务 A 后,将最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值