花书+吴恩达深度学习(十五)序列模型之循环神经网络 RNN

本文介绍了循环神经网络(RNN)的基本原理和应用,包括RNN的计算图、前向传播、反向传播(BPTT)、导师驱动过程(teacher forcing)以及不同序列长度的RNN模型,结合吴恩达深度学习课程和花书的内容,深入理解RNN在处理序列数据中的作用。
摘要由CSDN通过智能技术生成

目录

0. 前言

1. RNN 计算图

2. RNN 前向传播

3. RNN 反向传播

4. 导师驱动过程(teacher forcing)

5. 不同序列长度的 RNN


如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔~我会非常开心的~

花书+吴恩达深度学习(十五)序列模型之循环神经网络 RNN

花书+吴恩达深度学习(十六)序列模型之双向循环网络 BRNN 和深度循环网络 Deep RNN

花书+吴恩达深度学习(十七)序列模型之长短期记忆 LSTM 和门控循环单元 GRU

0. 前言

循环神经网络 RNN(Recurrent Neural Network)是一类专门用于处理序列数据的神经网络。

标准的神经网络无法适应不同长度的输入和输出, 没有共享参数,无法泛化文本不同位置的同个词。

RNN 在几个时间步内共享参数,使得模型可以扩展到不同长度的序列样本进行泛化,不需要分别学习句子每个位置的规则。

RNN 减少参数付出的代价是优化参数困难。

用一个识别是否是人名的例子,初始定义符号如下:

  • 输入 x :“Harry Potter and Hermione Granger invented a new spell.”
  • 输出 y :“110110000”
  • x^{<t>}表示 x 中第 t 个输入,例如 x^{<1>} 表示 Harry
  • y^{<t>} 表示 y 中第 t 个输出,例如 y^{<1>} 表示 1
  • T_x 表示 x 的长度
  • T_y 表示 y 的长度
  • 当 T_x=T_y 时,\tau 也表示序列长度

对于自然语言处理(Natural Language Processing),构建一个词汇表,对于一个输入 xx 中的每一个单词都构建一个 one-hot 向量,向量长度是词汇表的长度,单词的对应位置为 1 ,其余位置为 0 。

1. RNN 计算图

对于一个输入 x ,从左至右将每一个单词依次输入到神经网络中(相当于第 t 个时刻)。

每次计算不仅输入

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值