实时定位与跟踪技术
在基于视觉的定位和导航系统中,实时定位与跟踪技术是核心部分,它决定了系统的响应速度和精度。本节将详细介绍实时定位与跟踪的基本原理、常用算法、软件开发实例以及实际应用中的挑战和解决方案。
1. 视觉特征提取
1.1 特征点检测
特征点检测是视觉定位与跟踪的第一步,其目的是在图像中找到具有显著特征的点。这些点通常具有较高的局部对比度和独特的几何结构,能够在不同视角和光照条件下保持稳定的识别性。常用特征点检测算法包括SIFT、SURF、ORB、FAST等。
1.1.1 SIFT特征点检测
SIFT(Scale-Invariant Feature Transform)算法是一种尺度不变的特征点检测方法,能够在不同尺度下检测到稳定的特征点。SIFT算法的主要步骤包括:
-
尺度空间构建:通过高斯金字塔构建尺度空间。
-
极值点检测:在尺度