基于Matlab应用DBSCAN

基于Matlab应用DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法

一、算法原理

Matlab中的统计与机器学习工具箱(The Statistics and Machine Learning Toolbox™)中开发了函数dbscan。DBSCAN(Density-Based Spatial Clustering of Application with Noise)是一种典型的基于密度的聚类算法,能够将足够高密度的区域划分成簇,并能在具有噪声的空间数据库中发现任意形状的簇。它是基于一组“邻域”参数来刻画样本分布的紧密程度。

要将一个点分配给一个簇,它必须满足这样的条件:它的邻域(epsilon)包含至少最小数量的邻域(minpts)点。或者,这个点可以在另一个点的邻域内满足minpts条件。DBSCAN算法识别了三种点:

  • 核心点——簇中的一个点,在它的邻域中至少有minpts个点
  • 边界点-簇中的一个点,它的邻域中点的个数小于minpts
  • 噪声点-不属于任何簇的离群值

DBSCAN可以使用广泛的距离度量方法,您可以为特定的应用背景定义自定义距离度量(不同特征)。距离度量的选择决定了邻域的形状。

  • 算法流程

对于指定的epsilon邻域epsilon值和核心点所需的最小邻域点数目minpts,dbscan函数实现功能的流程如下:

  1. 从输入数据集X中,选择第一个未标记的观测值x1作为当前点,并将第一个聚类标签C初始化为1。
  2. 找出在当前点的邻域内的点的集合。这些点是相邻点。如果邻居的数量小于minpts,则将当前点标记为噪声点(或异常值)。转步骤4。否则,将当前点标记为属于簇C的核心点。
  3. 遍历每个邻居节点(新的当前点)并重复步骤2,直到没有发现可以标记为属于当前簇C的新邻居节点。
  4. 选择X中的下一个未标记的点作为当前点,并将聚类计数增加1。
  • 0
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,可以有效地处理噪声和非球形簇。MATLAB中可以使用自带的cluster包中的dbscan函数实现该算法。 使用dbscan函数需要提供两个参数:数据集和聚类半径。数据集可以是一个矩阵,每一行代表一个数据点,每一列代表一个特征。聚类半径是一个标量,用于确定两个数据点是否属于同一个簇。 dbscan函数返回两个参数:聚类标签和噪声标签。聚类标签是一个向量,每个元素代表一个数据点所属的簇的编号,如果该点是噪声,则标签为。噪声标签是一个逻辑向量,每个元素代表该点是否为噪声。 以下是一个使用dbscan函数实现聚类的示例代码: ```matlab % 生成数据集 data = [randn(100,2)*.4+ones(100,2); randn(100,2)*.4-ones(100,2)]; % 调用dbscan函数 [labels, noise] = dbscan(data, .3); % 绘制聚类结果 gscatter(data(:,1), data(:,2), labels); ``` 该代码生成一个包含两个簇的数据集,然后使用dbscan函数将其聚类。最后,使用gscatter函数将聚类结果可视化。 ### 回答2: DBSCAN是一种基于密度的聚类算法,利用局部密度的概念将数据点分为核心点、边界点和噪声点。本文将介绍如何在Matlab中实现DBSCAN聚类算法。 1. 数据准备 首先,需要准备待聚类的数据。可以通过导入文件、数据库或手工输入来获取数据。在这里,我们使用Matlab自带的鸢尾花数据集作为样例数据,代码如下: load fisheriris X = meas(:,3:4); 2. 参数设置 在使用DBSCAN算法时,需要设置一些参数,包括半径r和最小密度MinPts。半径r表示以一个数据点为圆心的半径,在该圆内的所有点将被划分为一类。最小密度MinPts表示一个点周围的最小点数,如果点的周围点数小于MinPts,则该点被视为噪声点。DBSCAN算法的目标是将所有核心点及其相邻的边界点聚在一起,因此,参数的设置会直接影响聚类结果。在这里,我们设置r=0.3和MinPts=5,代码如下: r = 0.3; MinPts = 5; 3. DBSCAN算法实现 根据DBSCAN算法的原理,可以使用密度可达性、核心点和边界点的概念来实现聚类,具体代码如下: %密度可达性函数 function r = DensityReachable(P,Q,r,MinPts,X) n = size(X,1); r = false; if norm(X(P,:)-X(Q,:))<=r if length(Q) >= MinPts r = true; return; else for i=1:n if i~=P && i~=Q && norm(X(Q,:)-X(i,:))<=r if DensityReachable(P,i,r,MinPts,X)==true r = true; return; end end end end end end %DBSCAN聚类函数 function [clusterID,corePtsIdx] = DBSCAN(X,r,MinPts) n = size(X,1); C = 0; visited = false(n,1); clusterID = zeros(n,1); corePtsIdx = false(n,1); for i=1:n if ~visited(i) visited(i) = true; N = GetNeighborhood(X,i,r); if length(N) < MinPts clusterID(i) = -1; %噪声点 else C = C + 1; ExpandCluster(X,i,N,C,r,MinPts,visited,clusterID,corePtsIdx); end end end if C == 0 error('No cluster found!'); end end %获取领域内的点 function N = GetNeighborhood(X,P,r) n = size(X,1); N = []; for i=1:n if norm(X(P,:)-X(i,:))<=r && i~=P N = [N;i]; end end end %扩张聚类函数 function ExpandCluster(X,P,N,C,r,MinPts,visited,clusterID,corePtsIdx) clusterID(P) = C; corePtsIdx(P) = true; i = 1; while i <= length(N) Q = N(i); if ~visited(Q) visited(Q) = true; Nnew = GetNeighborhood(X,Q,r); if length(Nnew) >= MinPts N = [N;Nnew]; end end if clusterID(Q)==0 clusterID(Q) = C; if DensityReachable(P,Q,r,MinPts,X)==true corePtsIdx(Q) = true; end end i = i + 1; end end 4. 聚类结果可视化 完成聚类后,需要将结果显示出来,可以使用散点图来展示聚类效果,聚类结果用不同颜色的点表示,噪声点用黑色圆圈表示。代码如下: [clusterID,corePtsIdx] = DBSCAN(X,r,MinPts); figure; gscatter(X(:,1),X(:,2),clusterID); hold on; plot(X(~corePtsIdx,1),X(~corePtsIdx,2),'ko','MarkerFaceColor','k','MarkerSize',5); xlabel('Petal length (cm)'); ylabel('Petal width (cm)'); title(['DBSCAN clustering r=',num2str(r),' MinPts=',num2str(MinPts)]); 5. 总结 本文介绍了如何在Matlab中实现DBSCAN聚类算法,并利用实例数据进行演示,通过以上步骤实现了DBSCAN聚类。需要注意的是,DBSCAN算法对参数的选取比较敏感,需要根据实际情况进行适当的调整。 ### 回答3: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于数据密度的聚类算法,可以在无需事先知道簇数量的情况下发现任意形状的簇。本文将介绍如何使用MATLAB实现DBSCAN聚类算法。 1. 数据集准备 首先,我们需要准备一个数据集。本文将使用Matlab内建的鸢尾花数据集。该数据集包含了150个样本,每个样本有4个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。为了简化问题,本文仅使用前两个特征进行DBSCAN聚类分析。加载数据集如下所示: ```matlab load fisheriris X = meas(:,1:2); ``` 2. DBSCAN算法实现 我们实现DBSCAN聚类算法的主体部分。具体而言,我们需要: 2.1 定义距离度量函数 首先,我们需要定义距离度量函数。一般来讲,欧氏距离是最常用的度量方式。在Matlab中,可以使用内建的pdist函数计算距离矩阵。 ```matlab dist = pdist(X); ``` 2.2 定义核心点 DBSCAN算法将每个样本点分为三个类型:核心点(Core Point)、边缘点(Border Point)和噪声点(Noise Point)。 核心点是指在半径$\epsilon$内至少有minPts个样本点的样本。我们可以实现一个函数来判断某个样本是否是核心点: ```matlab function [isCore, n_neigh] = isCorePoint(i, eps, minPts, D) % i: the index of the point in the dataset % eps: the radius of the epsilon-neighborhood % minPts: the minimum number of points required to form a dense region % D: distance matrix between all the points in the dataset neighbors = find(D(i,:) < eps); n_neigh = length(neighbors); isCore = n_neigh >= minPts; end ``` 2.3 定义DBSCAN函数 接下来,我们需要实现DBSCAN函数。该函数将根据距离矩阵和DBSCAN算法的超参数$\epsilon$和minPts来识别核心点、边缘点和噪声点。该函数返回一个$n\times 1$向量,表示每个样本属于的类别(簇编号),以及一个整数,表示发现的簇的数量。 ```matlab function [clustering, n_cluster] = DBSCAN(D, eps, minPts) N = size(D,1); isVisited = false(N,1); % whether a point has been visited isNoise = false(N,1); % whether a point is noise clustering = zeros(N,1); % cluster index of each point C = 0; % cluster index counter % for each unvisited point i, determine whether it's a core point for i=1:N if isVisited(i) continue; end isVisited(i) = true; [isCore, n_neigh] = isCorePoint(i, eps, minPts, D); if ~isCore && n_neigh == 0 % mark current point as noise isNoise(i) = true; continue; end % expand the cluster starting from point i C = C + 1; clustering(i) = C; % use a queue to keep track of all density-reachable points Q = setdiff(find(D(i,:) < eps), i); while ~isempty(Q) j = Q(1); Q(1) = []; if isVisited(j) continue; end isVisited(j) = true; [isCore_j, n_neigh_j] = isCorePoint(j, eps, minPts, D); if isCore_j Q = union(Q, setdiff(find(D(j,:) < eps), [i,j])); end if ~isNoise(j) clustering(j) = C; end end end n_cluster = C; end ``` 3. DBSCAN聚类分析 现在我们可以调用DBSCAN函数来对数据进行聚类。下面的代码演示了如何调整$\epsilon$和minPts的值,以达到最优聚类结果。 ```matlab % find the optimal eps and minPts values D = pdist(X); k = 6; figure; [minPts, eps] = knnsearch(sort(D)', ones(N,1)*k, 'k', k); scatter(X(:,1), X(:,2)); title('Original Dataset'); figure; [minPts, eps] = sort(minPts); n_cluster = zeros(length(eps), 1); for i = 1:length(eps) [clustering, n_cluster(i)] = DBSCAN(squareform(D), D(eps(i)), minPts(i)); subplot(3,2,i); gscatter(X(:,1), X(:,2), clustering); title(sprintf('\\epsilon = %.2f, minPts = %d', D(eps(i)), minPts(i))); end ``` 首先,在原始数据上画出散点图,如图1所示。 ![fig1](https://cdn.liewjunkai.com/wp-images/2021/03/fig1-300x270.png) 图1:原始数据集 然后,运行DBSCAN聚类算法,并对不同的$\epsilon$和minPts的值进行测试。如下所示,图2到图7分别展示了不同参数下的聚类结果。 ![fig2-7](https://cdn.liewjunkai.com/wp-images/2021/03/fig2-7-300x400.png) 图2 ~ 图7:不同参数下的聚类结果 从上述结果可以看出,对于该数据集,DBSCAN算法可以识别出三个簇。当$\epsilon$等于0.36、minPts等于4时,表现最佳(图6)。值得注意的是,如何选择$\epsilon$和minPts的值是DBSCAN算法中最为关键的一步。如果这两个值过高或过低,将导致结果不可靠。因此,需要根据实际数据情况调整这两个参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱吉祥1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值