卷积的尺度特性

 

▌卷积运算 ▌


1.卷积定义

卷积运算是数学中重要的运算,它广泛被用于信号处理、系统分析中。它与相关运算的形式很接近。对于两个连续时间信号 x ( t ) , y ( t ) x\left( t \right),y\left( t \right) x(t),y(t),它们之间的卷积运算定义为: x ( t ) ∗ y ( t ) = ∫ − ∞ ∞ x ( τ ) y ( t − τ ) d τ x\left( t \right) * y\left( t \right) = \int_{ - \infty }^\infty {x\left( \tau \right)y\left( {t - \tau } \right)d\tau } x(t)y(t)=x(τ)y(tτ)dτ

对于离散序列,也可以定义对应的卷积和运算:

x [ n ] ∗ y [ n ] = ∑ m = − ∞ ∞ x [ m ] y [ n − m ] x\left[ n \right] * y\left[ n \right] = \sum\limits_{m = - \infty }^\infty {x\left[ m \right]y\left[ {n - m} \right]} x[n]y[n]=m=x[m]y[nm]

卷积(卷积和)运算满足交换律、结合律、分配率

2.卷积图解示意

下图显示了两个信号进行卷积获得结果结果的过程。可以选择其中一个进行反褶、平移 然后和另外一个信号进行相乘、积分或者最后的结果:

image

 

▌尺度变化 ▌


信号的尺度变化是指对于信号的自变量乘以一个常量,比如信号 f ( t ) f\left( t \right) f(t),选择一个常数 a a a,对应信号 f ( a t ) f\left( {at} \right) f(at)和原来信号相比就是发生了尺度变化。

a > 1 a > 1 a>1时,对应的信号波形收缩;当 a < 1 a < 1 a<1时对应的波形拉伸。下图显示了 sin ⁡ c ( t ) \sin c\left( t \right) sinc(t)信号随着自变量除以 2 n − 1 2n - 1 2n1的因子变化而对应的波形所发生的的变化情况。

image

 

▌卷积尺度变化 ▌


通常情况下,两个信号进行卷积,如果对于其中任何一个进行尺度变化,所得到的结果与原来的结果之间并没有太多的关系。

1.尺度性质

但是当两个信号进行了相同的尺度变化,那么所得到的结果就与原来两个信号的卷积结果之间存在着相同的尺度变化。比如:

y ( t ) = x ( t ) ∗ h ( t ) y\left( t \right) = x\left( t \right) * h\left( t \right) y(t)=x(t)h(t)
那么: y ( t 2 ) = 1 2 x ( t 2 ) ∗ h ( t 2 ) y\left( {{t \over 2}} \right) = {1 \over 2}x\left( {{t \over 2}} \right) * h\left( {{t \over 2}} \right) y(2t)=21x(2t)h(2t)

2.证明

这个性质可以通过变量替换得到证明:

3.举例

对于任意信号 f ( t ) f\left( t \right) f(t),都有:
f ( t ) = f ( t ) ∗ δ ( t ) f\left( t \right) = f\left( t \right) * \delta \left( t \right) f(t)=f(t)δ(t)

那么: f ( t 2 ) ∗ δ ( t 2 ) = f ( t 2 ) ∗ [ 2 δ ( t ) ] = 2 f ( t 2 ) f\left( {{t \over 2}} \right) * \delta \left( {{t \over 2}} \right) = f\left( {{t \over 2}} \right) * \left[ {2\delta \left( t \right)} \right] = 2f\left( {{t \over 2}} \right) f(2t)δ(2t)=f(2t)[2δ(t)]=2f(2t)

### 尺度均衡金字塔卷积 #### 算法原理 尺度均衡金字塔卷积是一种结合了多尺度分析和平滑处理的技术,旨在通过不同尺度的空间特征提取来增强模型的表现力。该技术利用高斯金字塔结构构建尺度空间,在此过程中应用卷积操作以捕捉图像的不同分辨率下的特性[^1]。 具体来说,为了实现真正的尺度不变性,可以借鉴Laplacian of Gaussian (LoG)算子的思想。然而,由于直接计算LoG较为复杂且耗时,通常会使用高斯差分(Difference of Gaussians, DoG)作为其近似形式来进行高效的关键点检测和描述符生成。这种做法不仅简化了运算过程,还能够在一定程度上保留原始信号的重要信息。 对于每一个尺度级别上的图像,都会执行一次标准的二维离散卷积操作。随着尺度逐渐增大,所使用的核尺寸也会相应扩大,从而确保在整个范围内都能获得有效的响应。此外,通过对各层间的结果进行加权求和,最终得到融合后的输出特征图谱。 #### 实现方式 以下是Python代码片段展示如何创建一个简单的尺度均衡金字塔卷积: ```python import torch.nn as nn from torchvision import models class ScaleBalancedPyramidConv(nn.Module): def __init__(self, base_model='resnet50', num_classes=1000): super(ScaleBalancedPyramidConv, self).__init__() # 加载预训练的基础网络模型 backbone = getattr(models, base_model)(pretrained=True) # 定义多个分支用于处理不同的尺度输入 self.branches = nn.ModuleList([ nn.Sequential( *list(backbone.children())[:-2], # 移除最后两层(全局平均池化层和全连接层) nn.Conv2d(2048, 512, kernel_size=(3, 3), stride=(1, 1)), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1)) ) for _ in range(3) ]) # 融合模块 self.fc_fusion = nn.Linear(512*len(self.branches), num_classes) def forward(self, x_list): outputs = [] for i, branch in enumerate(self.branches): out = branch(x_list[i]) out = out.view(out.size(0), -1) outputs.append(out) fused_output = torch.cat(outputs, dim=-1) final_out = self.fc_fusion(fused_output) return final_out ``` 这段代码定义了一个名为`ScaleBalancedPyramidConv`的新类,它继承自`nn.Module`并实现了上述提到的功能。这里选择了ResNet架构作为基础骨干网,并针对三个不同尺度的数据进行了独立处理后再做聚合。 #### 应用场景 此类方法广泛应用于计算机视觉领域中的目标识别、语义分割以及姿态估计等问题中。特别是在面对含有大量尺度变化的目标时表现出色,因为它们能够有效地适应各种大小的对象而不丢失细节信息。另外,在医学影像分析方面也有着重要的作用,比如肿瘤边界界定或是细胞分类等任务都可以从中受益匪浅。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值