▓ 第七次作业各个小题参考答案:
- 2021年春季学期-信号与系统-第七次作业参考答案-第一小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第二小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第三小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第四小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第五小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第六小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第七小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第八小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第九小题
- 2021年春季学期-信号与系统-第七次作业参考答案-第十小题
- 2021年春季学期-信号与系统-第七次作业参考答案-MATLAB实验题
▌第一小题 ▌
1. 已知单个梯形脉冲和单个余弦脉冲的傅里叶 变换,求下图所示的周期梯形信号和周期全波 余弦信号的傅里叶级数和傅里叶变换。
单个梯形信号的傅里叶变换:
8 E ( T − τ ) ω 2 sin [ ω ( T + τ ) 4 ] sin [ ω ( T − τ ) 4 ] {{8E} \over {\left( {T - \tau } \right)\omega ^2 }}\sin \left[ {{{\omega \left( {T + \tau } \right)} \over 4}} \right]\sin \left[ {{{\omega \left( {T - \tau } \right)} \over 4}} \right]\,\,\,\,\,\,\,\, (T−τ)ω28Esin[4ω(T+τ)]sin[4ω(T−τ)]
余弦脉冲信号 的傅利叶变换:
2 E T π ⋅ cos ( ω T 2 ) 1 − ( ω T π ) 2 {{2ET} \over \pi } \cdot {{\cos \left( {{{\omega T} \over 2}} \right)} \over {1 - \left( {{{\omega T} \over \pi }} \right)^2 }} π2ET⋅1−(πωT)2cos(2ωT)
提示:三个字,“离散化”
F p ( ω ) = ω 1 ⋅ ∑ n = − ∞ ∞ F 0 ( n ω 1 ) δ ( ω − n ω 1 ) F_p \left( \omega \right) = \omega _1 \cdot \sum\limits_{n = - \infty }^\infty {F_0 \left( {n\omega _1 } \right)\delta \left( {\omega - n\omega _1 } \right)} Fp(ω)=ω1⋅n=−∞∑∞F0(nω1)δ(ω−nω1)
▌第二小题 ▌
2.求下面信号的频域。
▌第三小题 ▌
3. 右图所示的信号f(t),已知它的傅里叶变换 如下:
利用傅里叶变换性质(不做积分运算)求:
▌第四小题 ▌
4. Consider the signal
x
(
t
)
x\left( t \right)
x(t) in the following figure:
(a)Find the fourier transform
X
(
j
ω
)
X\left( {j\omega } \right)
X(jω) of
x
(
t
)
x\left( t \right)
x(t)。
(b) Sketch the signal:
x
~
(
t
)
=
x
(
t
)
∗
∑
k
=
−
∞
∞
δ
(
t
−
4
k
)
\tilde x\left( t \right) = x\left( t \right) * \sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)}
x~(t)=x(t)∗k=−∞∑∞δ(t−4k)(c) Find another signal
g
(
t
)
g\left( t \right)
g(t) such that
g
(
t
)
g\left( t \right)
g(t) is not the same as
x
(
t
)
x\left( t \right)
x(t) and
x
~
(
t
)
=
g
(
t
)
K
∗
∑
k
=
−
∞
∞
δ
(
t
−
4
k
)
\tilde x\left( t \right) = g\left( t \right)K*\sum\limits_{k = - \infty }^\infty {\delta \left( {t - 4k} \right)}
x~(t)=g(t)K∗k=−∞∑∞δ(t−4k)(d) Argue that, alghough
G
(
j
ω
)
G\left( {j\omega } \right)
G(jω) is different from
X
(
j
ω
)
X\left( {j\omega } \right)
X(jω)
G
(
j
π
k
2
)
=
X
(
j
π
k
2
)
G\left( {j{{\pi k} \over 2}} \right) = X\left( {j{{\pi k} \over 2}} \right)
G(j2πk)=X(j2πk)for all intergers
k
k
k, you should not explicitly avaluate
G
(
j
ω
)
G\left( {j\omega } \right)
G(jω) to answer this question.
还是忍不住多说两句:
(a)参考第4小题中的内容;
(b)这分明就是将x(t)进行周期为4的周期化;
(c)忍住了,就是不提示;
(d)对照X(jω),G(jω)离散化后的表达式,
它们相等,就会得到结论了。
▓ 本题为思考题
▌第五小题 ▌
5. Define two-dimensional Fourier transform of
x
(
t
1
,
t
2
)
x\left( {t_1 ,t_2 } \right)
x(t1,t2) as:
X
(
j
ω
1
,
j
ω
2
)
=
∫
−
∞
∞
∫
−
∞
∞
x
(
t
1
,
t
2
)
e
−
j
(
ω
1
t
1
+
ω
2
t
2
)
d
t
1
d
t
2
X\left( {j\omega _1 ,j\omega _2 } \right) = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {x\left( {t_1 ,t_2 } \right)e^{ - j\left( {\omega _1 t_1 + \omega _2 t_2 } \right)} dt_1 dt_2 } }
X(jω1,jω2)=∫−∞∞∫−∞∞x(t1,t2)e−j(ω1t1+ω2t2)dt1dt2(a) Show that this double integral can be performed as two successive one-dimensional Fourier transforms, first in
t
1
t_1
t1 with
t
2
t_2
t2 regarded as fixed and then in
t
2
t_2
t2 .
(b)Use the result of part(a) to determine the inverse transform that is, an expression for
x
(
t
1
,
t
2
)
x\left( {t_1 ,t_2 } \right)
x(t1,t2) in terms of
X
(
j
ω
1
,
j
ω
2
)
X\left( {j\omega _1 ,j\omega _2 } \right)
X(jω1,jω2).
▓ 本题为思考题
▌第六小题 ▌
6.已知调幅信号为: x ( t ) = ( 1 + 1.2 cos Ω m t ) ⋅ cos ω c t , ω c = 4 Ω m x\left( t \right) = \left( {1 + 1.2\cos \Omega _m t} \right) \cdot \cos \omega _c t,\,\,\,\omega _c = 4\Omega _m x(t)=(1+1.2cosΩmt)⋅cosωct,ωc=4Ωm绘制出该信号及其包络检波后的波形:
▌第七小题 ▌
7. 已知调幅信号为:
x
1
(
t
)
=
cos
Ω
t
⋅
cos
ω
c
t
x_1 \left( t \right) = \cos \Omega t \cdot \cos \omega _c t
x1(t)=cosΩt⋅cosωct
x
2
(
t
)
=
(
1
+
0.5
sin
Ω
t
)
⋅
cos
ω
c
t
x_2 \left( t \right) = \left( {1 + 0.5\sin \Omega t} \right) \cdot \cos \omega _c t
x2(t)=(1+0.5sinΩt)⋅cosωct其中
ω
c
=
4
Ω
\omega _c = 4\Omega
ωc=4Ω,求
X
1
(
ω
)
,
X
2
(
ω
)
X_1 \left( \omega \right),X_2 \left( \omega \right)
X1(ω),X2(ω),并绘制出它们的波形图和频谱图。
▌第八小题 ▌
8.下图绘制出调幅信号的频谱 F ( ω ) F\left( \omega \right) F(ω) 以及对应的单 边的调制频谱 F 1 ( ω ) F_1 \left( \omega \right) F1(ω) ,试证明,使用同步解调可以从 F 1 ( ω ) F_1 \left( \omega \right) F1(ω) 恢复出 F ( ω ) F\left( \omega \right) F(ω) 。
▌第九小题 ▌
9. 如果 F [ f ( t ) ] = F ( ω ) F\left[ {f\left( t \right)} \right] = F\left( \omega \right) F[f(t)]=F(ω),令 Z ( ω ) = 2 F ( ω ) U ( ω ) Z\left( \omega \right) = 2F\left( \omega \right)U\left( \omega \right) Z(ω)=2F(ω)U(ω)。 U ( ω ) U\left( \omega \right) U(ω)是关于 ω \omega ω的单位阶跃函数。试证明: z ( t ) = F − 1 [ Z ( ω ) ] = f ( t ) + f ˉ ( t ) z\left( t \right) = F^{ - 1} \left[ {Z\left( \omega \right)} \right] = f\left( t \right) + \bar f\left( t \right) z(t)=F−1[Z(ω)]=f(t)+fˉ(t) 其中: f ˉ ( t ) = j π [ ∫ − ∞ ∞ f ( τ ) t − τ d τ ] \bar f\left( t \right) = {j \over \pi }\left[ {\int_{ - \infty }^\infty {{{f\left( \tau \right)} \over {t - \tau }}d\tau } } \right] fˉ(t)=πj[∫−∞∞t−τf(τ)dτ]
▌第十小题 ▌
10.已知下图所示系统中
cos
(
ω
c
t
)
\cos \left( {\omega _c t} \right)
cos(ωct) 是自激振荡器,理想低通滤波器的转移函数为:
H
L
(
j
ω
)
=
[
u
(
ω
+
2
Ω
)
−
u
(
ω
−
2
Ω
)
]
e
−
j
ω
t
0
H_L \left( {j\omega } \right) = \left[ {u\left( {\omega + 2\Omega } \right) - u\left( {\omega - 2\Omega } \right)} \right]e^{ - j\omega t_0 }
HL(jω)=[u(ω+2Ω)−u(ω−2Ω)]e−jωt0且
ω
c
>
>
Ω
\omega _c > > \Omega
ωc>>Ω。
(1)求虚框所示系统的冲激响应
h
(
t
)
h\left( t \right)
h(t);
(2)如果输入信号为:
e
(
t
)
=
[
sin
(
Ω
t
)
Ω
t
]
2
cos
(
ω
c
t
)
e\left( t \right) = \left[ {{{\sin \left( {\Omega t} \right)} \over {\Omega t}}} \right]^2 \cos \left( {\omega _c t} \right)
e(t)=[Ωtsin(Ωt)]2cos(ωct)求输出信号
r
(
t
)
r\left( t \right)
r(t)。
(3)如果输入信号为
e
(
t
)
=
[
sin
(
Ω
t
)
Ω
t
]
2
sin
(
ω
c
t
)
e\left( t \right) = \left[ {{{\sin \left( {\Omega t} \right)} \over {\Omega t}}} \right]^2 \sin \left( {\omega _c t} \right)
e(t)=[Ωtsin(Ωt)]2sin(ωct)求输出信号
r
(
t
)
r\left( t \right)
r(t)。
(4)系统是否是线性是不变系统?
提示:郑君里,信号与系统,课后习题5-20
▌MATLAB 实验题 ▌
在网络学堂下载一段音乐及其经过处理后的音乐数据文件,聆听相应的音频效果。使用在MATLAB中使用spectrogram命令观测音乐及其变换后的数据时频联合分布,总结节奏变化与尺度变化两种操作在听觉和音乐的时频联合分布之间的差别。
-
原始音乐前4秒钟的时频联合分布
-
加快节奏后音乐前4秒钟的时频联合分布
- 尺度压缩后音乐前4秒钟的时频联合分布
参考MATLAB相关的命令格式:
>> [mdata, fs] = audioread('d:\'temp\'1.wav');'
>> spectrogram(mdata(1:fs*2,1), 2048, 1024, 2048, fs, 'yaxis')
HMW6-DATA中的文件说明:
1.mp3 :原始音乐,MP3格式
1.wav :原始音乐,WAV格式
1fast.wav :加快节奏50%文件
1fast2.wav :加快节奏100%文件
1fastrate.wav:尺度减少50%文件;
1fastrate2.wav:尺度减小75%文件
1slow.wav :减慢节奏50%文件;
1slow2.wav :减慢节奏100%文件
1slowrate.wav:尺度拉伸50%文件
1slowrate2.wav:尺度拉伸100%文件
soundstretch.exe:处理程序
- 2021年春季学期-信号与系统-第一次作业参考答案
- 2021年春季学期-信号与系统-第二次作业参考答案
- 2021年春季学期-信号与系统-第三次作业参考答案
- 2021年春季学期-信号与系统-第四次作业参考答案
- 2021年春季学期-信号与系统-第五次作业参考答案
- 2021年春季学期-信号与系统-第六次作业参考答案
- 2021年春季学期-信号与系统-第七次作业参考答案
- 2021年春季学期-信号与系统-第八次作业参考答案
- 2021年春季学期-信号与系统-第九次作业参考答案
- 2021年春季学期-信号与系统-第十次作业参考答案
- 2021年春季学期-信号与系统-第十一次作业参考答案
- 2021年春季学期-信号与系统-第十二次作业参考答案
- 2021年春季学期-信号与系统-第十三次作业参考答案
- 2021年春季学期-信号与系统-第十四次作业参考答案
- 2021年春季学期-信号与系统-第十五次作业参考答案