什么是PCB板上的鼠牙洞?

简 介: 最近在博文 What are Mouse Bites in PCB? 中看到关于电路板分离工艺的讲解,对于电路板设计与生产过程有了更深入的了解。

关键词 PCBMouse-biteV型槽

  老鼠小巧玲珑,任何东西一旦被它们咬了就会留下它们那细小的牙印作为证据。在你的电路板上,有时也会发现这些细细的牙印。不过不用害怕,这些牙印并不意味着你可能会感染上老鼠传播的病菌。

  实际上,这些细小的孔可以帮助你把电路板从整张生产板上进行分离。孔洞的位置和尺寸非常精确。当然,看起来的确与你在那些鼠咬物品上所留下的鼠牙印很像。

  因此,你不必去准备奶酪和老鼠夹子去诱捕那些四处乱窜的老鼠,本文所讨论的PCB板上的鼠牙印与真实老鼠没有半毛钱的关系,相反,我们将关注PCB鼠牙印、相应的尺寸,确保你更加深入了解PCB生产工艺以及电路板。

▲ 图1 小老鼠

▲ 图1 小老鼠

 

§01 是鼠牙洞?


  路板上的鼠牙洞(Mouse bite) 是PCB制作板的一部分,用于将小型PCB进行汇总便于生产过程。除此之外,有的人使用鼠牙印来描述刻画PCB上的敷铜被过度腐蚀的现象(刻蚀缺口)。本文中的鼠牙印不是这个意思。

  PCB生产商利用CAM软件将PCB电路板组合摆放成一大张生产板。为了能够在后期制作工艺中对生产板固定,组装和制作者需要PCB电路之外提供额外板材空间,对于小型电路板尤为重要。

  通常情况下,生产工艺中的板材具有统一的尺寸,所以你可以再一张标准板材上铺设多个PCB电路板图个体。这不仅使得生产过程变得容易,更重要的是降低了制作成本,生产多块的制作成本与一块相同。

▲ 图1.1 生产PCB拼接板

▲ 图1.1 生产PCB拼接板

  一旦制作完成,就像之前你将它们汇总成一大张版图,你需要再重新将它们进行分离,这个过程称为depanelization(分割面板)过程。分割面板可以使用V-型沟槽、预先刻痕线或者直接切割。你需要在分隔板的边缘预先将这些沟槽刻痕进行制作,便于将它们进行分离,或者将电路板与固定边缘板材进行分割。这些用于生产过程固定的板材边缘,被称为“breakout tabs”。

  为了便于分离,通常也会使用密集的小孔排成一条线。当电路板从固定边缘折断之后,就会留下密集的鼠牙印。你可以后期对他们进行打磨光滑。

 

§02 置与尺寸


  于分离的小洞各式各样,然而大部分生产商都是用五个紧排的小洞用于板材分离。分离小洞的直径在0.5mm(0.020inch)。至于间距,大都在0.76mm(0.03inch)。

  PCB板上分离孔洞的所占的空间与尺寸显得随机,这减少了在分离之后的清理工作。越小的孔洞分离后清理越容易,但在加工中需要更多的钻孔过程,同时也会节省更多的材料。

  如果分离孔直径过大,则分离后清理边缘困难。分离孔在PCB板上的位置也很重要,一个重要的原则就是它们尽可能靠近PCB边缘,分离后浪费的PCB板材就会很少。

▲ 图2.1 四个一张的PCB板

▲ 图2.1 四个一张的PCB板

◎ 固定边界放置条件

  在计划电路板周围放置固定边界是需要考虑以下要素:

  • 为了防止铣刀被磨损、过度使用、节省时间,在电路板周围不要防止过多的固定边界;
  • 固定边界需要足够多,能够支撑电路完成整个生产工艺过程;
  • 固定边界距离电路板上最近的元器件至少预留0.125英寸(3.2mm)的间隔;
  • 不要将固定边界放置距离线路或者敏感器件周围,这将会导致这些位置在分离的过程中遭受更多的应力;

  将固定边界剥离过程产生应用对电路造成的危害有可能不会立即被发现,有时会造成电路间歇性故障,使得排查过程异常困难。这就是为何需要将固定边界远离电路板,以提高电路成品率。

  当然,如果固定边界放置过少,以至于无法支撑电路板完成制作过程全流程。由于电路板的弯曲变形会导致产生组装过程不可靠。此时,制作PCB的经验知识就会派上用场了。

 

§03 PCB上V型沟槽


  了用于分割电路板,往往需要在电路板上通过铣刀刻画出V型沟槽,也就是在PCB板厚度方向上切掉一些材料,保留少部分将电路板连接在一起。在生产的最后环节,通过铣刀在PCB上铣出V型沟槽轮廓,然后将它们从生产电路板上切割下来。可以通过专用的V型刻刀来完成。下面是一些关于V型沟槽的一些准则:

▲ 图3.1 PCB上的V型沟槽

▲ 图3.1 PCB上的V型沟槽

◎ 放置V型沟槽准则

  • 确保电路板之间空隙为0mm,也就是每块电路板之间是直接相连,没有空余电路板需要去除;
  • 在V型沟中心线与电路板外轮廓需要保持有0.35mm距离;
  • V型沟槽需要呈现直线,呈现垂直或者水平直线;
  • 刻画V型沟槽的PCCB的尺寸至少需要有75mm×75mm,最大不超过450mm×1245mm;

▲ 图3.1.1 电路板上的V型沟槽制作过程

▲ 图3.1.1 电路板上的V型沟槽制作过程

 

§04 离电路板


  常情况下,对于集成在一张PCB面板上的各个电路板进行分离的方法通常有以下三种类型:

◎ 标签卡

  这种情况下,一些不需要的PCB部分需要预先从电路上切除,仅仅留下分离空洞来连接各个子电路板。它们相互连接可以使用后续生成方便,也很容易手工将它们相互掰开。

▲ 图4.1.1 电路板边缘的分离空洞

▲ 图4.1.1 电路板边缘的分离空洞

◎ V型槽

  这是最常见的分离电路板的方法。在每个独立的电路板周围铣出V型沟槽。对于厚的电路板,沟槽深度达到电路板厚度的三分之一。通常在电路板上面和下面都对称进行刻画沟槽。

◎ 直接切割

  这种情况下,整张电路板上的各个子模块之间没有鼠牙洞,或者V型沟槽。那么怎么分离电路板呢?往往采用两种办法:

  • 对于厚度小于1mm的电路板,可以采用激光切割的方式。这种方式成本高,切割过程也会产生震动和灰尘。
  • 采用弯弓刀具或者旋转刀具进行切割,这种加工工艺便宜,效率不是很高。

  相比前面两种,这种采用切割的方式现在很少使用了。

  对于大多数应用来说,采用标签卡、V型沟槽来分割正常生产板上的各个子电路板是最常用的。对于PCB设计者来讲需要懂得对于他的应用来讲,哪一种方法更好,然后在确定如何将电路板汇总成正常生产板来保证分离过程比较容易,并且有着高的支撑强度。

▲ 图4.3.1 电路板上的分离空洞

▲ 图4.3.1 电路板上的分离空洞

 

§05 签卡与V型槽


  电路板产生过程中如何选择采用标签卡式还是V型槽式来分离电路板呢。下面是一个考虑的因素:

◎ 边缘器件

  在设计使用标签卡式分立方案时,需要考虑到分离点不要距离电路板边缘器件距离太近。通过改变位置来避免这种情况。使用V型槽则只要保证分离沟槽距离电路板最外边的元器件不要太近即可。

◎ 电路板形状

  如果电路板形状是规整的长方形,使用V型沟槽的分立方案比较适合。当电路板形状是不规则的时候,则利用标签式,即使用鼠牙洞来分离电路板更好。

▲ 图5.2.1 电路板分离空洞

▲ 图5.2.1 电路板分离空洞

◎ 时间因素

  使用标签卡式的分立方案加工时间长,而V型沟槽则加工时间短。

◎ 边缘质量

  如果你对于分离完之后电路板的边缘质量要求高的话,则使用标签卡式为好。分离完之后,仅仅在电路板边缘局部会剩下小的鼠牙印,使用砂纸局部打磨便可以取出。而通过V型槽分离的电路板,整个边缘都显得比较粗糙,需要更多的后期打磨才能够改善电路板边缘质量。

◎ 材料利用率

  V型槽分立方案对于PCB板材的利用率最高。标签卡则会浪费一定的PCB板,从而会使得PCB制作成本上升。


■ 相关文献链接:

● 相关图表链接:

### 工业PCB缺陷检测中的深度学习算法实现 #### PCB缺陷检测背景 随着电子产品制造行业的快速发展,PCB的质量控制变得尤为重要。传统的PCB缺陷检测方法主要依靠人工检查或简单的机器视觉技术,这些方法效率低下且易受人为因素影响[^3]。 #### 基于深度学习的解决方案 近年来,基于深度学习的目标检测算法被广泛应用于工业领域,特别是在PCB缺陷检测中表现出优异性能。以下是几种常用的深度学习算法及其在PCB缺陷检测中的具体实现方式: --- #### 1. YOLO系列算法 YOLO (You Only Look Once) 是一种高效的实时目标检测算法,适用于快速处理大量数据的任务。对于PCB缺陷检测,YOLOv8是一个较新的版本,具有更高的精度和更快的速度。 - **特点**: - 单阶段检测器,速度快,适合实时应用场景。 - 支持多类别的同时检测,能够识别多种类型的PCB缺陷(如漏孔、鼠牙等)[^2]。 - **实现流程**: 1. 数据准备:收集并标注PCB图像数据集,标注内容应包括缺陷位置和类别。 ```python import yaml with open('data.yaml', 'r') as file: data_config = yaml.safe_load(file) ``` 2. 模型训练:使用YOLOv8框架进行模型训练。 ```bash yolo train model=yolov8n.pt data=data.yaml epochs=100 imgsz=640 ``` 3. 推理与验证:加载训练好的模型并对新图像进行预测。 ```python from ultralytics import YOLO model = YOLO("best_model.pt") # 加载最佳模型 results = model.predict(source="test_image.jpg", conf=0.5, iou=0.5) ``` - **优化建议**: 调整输入图像尺寸至常用标准(如`416x416` 或 `608x608`),以平衡速度与准确性[^4]。 --- #### 2. Faster R-CNN Faster R-CNN是一种两阶段目标检测算法,相较于YOLO更注重检测精度,但在速度上稍逊一筹。 - **特点**: - 高精度检测能力,尤其适合复杂场景下的小目标检测。 - 可扩展性强,便于定制化开发。 - **实现流程**: 使用PyTorch框架构建Faster R-CNN模型: ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = fasterrcnn_resnet50_fpn(pretrained=True).to(device) model.eval() ``` --- #### 3. Mask R-CNN Mask R-CNN是在Faster R-CNN基础上改进而来的算法,除了定位目标外还能生成像素级分割掩码,非常适合需要精确边界信息的应用场景。 - **特点**: - 提供目标区域的语义分割结果,有助于分析缺陷的具体形态。 - 对于形状不规则的小面积缺陷尤为适用。 - **实现流程**: 利用MMDetection库搭建Mask R-CNN模型: ```bash pip install mmdet python tools/train.py configs/mask_rcnn_r50_fpn_1x_coco.py --gpu-id 0 ``` --- #### 技术选型考量 不同算法的选择取决于具体的业务需求和技术条件: - 如果追求高实时性,则推荐使用YOLO系列; - 若需兼顾精度与鲁棒性,可以选择Faster R-CNN; - 当涉及复杂的语义分割任务时,优先考虑Mask R-CNN。 此外,硬件资源也是重要约束条件之一。例如,具备CUDA支持的GPU可以显著提升推理速度。 --- #### 结论 综上所述,基于深度学习的PCB缺陷检测系统可以通过上述提到的各种先进算法得以高效实现。无论是从理论还是实践层面来看,这类方案均展现出巨大潜力,能够在保障产品质量的同时降低生产成本。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值