期末微积分考试试题求解 :利用python求解

今年期末微积分考试试题:看看你能够在两个小时内做对几道题? 搜集到了一份期末微积分考试试题。为了对其内容进行进一步分析,对其内容进行整理如下。

 

§01 空题


每个空3分,共10题

1. 求解常微分方程通解

y ′ = 1 + 2 x + y 2 + 2 x y 2 y' = 1 + 2x + y^2 + 2xy^2 y=1+2x+y2+2xy2

◎ 求解:

2 x y 2 ( x ) + 2 x + y 2 ( x ) + 1 = d d x y ( x ) 2xy^2 \left( x \right) + 2x + y^2 \left( x \right) + 1 = {d \over {dx}}y\left( x \right) 2xy2(x)+2x+y2(x)+1=dxdy(x) y ( x ) = tan ⁡ ( C 1 + x 2 + x ) y\left( x \right) = \tan \left( {C_1 + x^2 + x} \right) y(x)=tan(C1+x2+x)

from headm import *                 # =

from sympy                  import symbols,simplify,expand,print_latex
from sympy                  import *

x,z = symbols('x z')
y,f,g = symbols('y f g', cls=Function)

diffeq = Eq(1 + 2*x + y(x)**2 + 2*x*y(x)**2, y(x).diff(x))
print_latex(diffeq)
print_latex(dsolve(diffeq, y(x)))

_ = tspexecutepythoncmd("msg2latex")
clipboard.copy(str(result))

2. 求解常微分方程通解

y ′ ′ − 2 y ′ + y = 2 y'' - 2y' + y = 2 y2y+y=2

◎ 求解:

y ( x ) − 2 d d x y ( x ) + d 2 d x 2 y ( x ) = 2 y\left( x \right) - 2{d \over {dx}}y\left( x \right) + {{d^2 } \over {dx^2 }}y\left( x \right) = 2 y(x)2dxdy(x)+dx2d2y(x)=2 y ( x ) = ( C 1 + C 2 x ) e x + 2 y\left( x \right) = \left( {C_1 + C_2 x} \right)e^x + 2 y(x)=(C1+C2x)ex+2

diffeq = Eq(y(x).diff(x,x)-2*y(x).diff(x)+y(x),2)

print_latex(diffeq)
print_latex(dsolve(diffeq, y(x)))

3. 求解级数极限

lim ⁡ n → + ∞ ∑ k = 1 n 1 n + 3 k \mathop {\lim }\limits_{n \to + \infty } \sum\limits_{k = 1}^n {{1 \over {n + 3k}}} n+limk=1nn+3k1

◎ 数值求解:

▲ 数值求解n→无穷大对应的累加和

▲ 数值求解n→无穷大对应的累加和

n = 10000 n = 10000 n=10000时对应的取值为:

sumn(10000): 0.46206062271704684

数值求解代码:

from headm import *                 # =

def sumn(n):
    return sum([1/(n+3*k) for k in range(1,n+1)])

ndim = [sumn(i+1) for i in range(1000)]

plt.clf()
plt.figure(figsize=(10,6))
plt.plot(ndim)
plt.xlabel("n")
plt.ylabel("Sum(n)")
plt.grid(True)
plt.tight_layout()
plt.savefig(r"d:\temp\figure1.jpg")
tspshowimage(image=r"d:\temp\figure1.jpg")

printt(sumn(10000)|)

根据 Euler–Maclaurin formula ,可以将有限长累加和转换成对应的Euler-Maclauring公式。

∑ k = 1 n 1 n + 3 k = ( log ⁡ ( 4 n ) 3 − log ⁡ ( n + 3 ) 3 + 1 2 ( n + 3 ) + 1 8 n , ∣ 1 4 ( n + 3 ) 2 − 1 64 n 2 ∣ ) \sum\limits_{k = 1}^n {{1 \over {n + 3k}}} = \left( {{{\log \left( {4n} \right)} \over 3} - {{\log \left( {n + 3} \right)} \over 3} + {1 \over {2\left( {n + 3} \right)}} + {1 \over {8n}},\quad \left| {{1 \over {4\left( {n + 3} \right)^2 }} - {1 \over {64n^2 }}} \right|} \right) k=1nn+3k1=(3log(4n)3log(n+3)+2(n+3)1+8n1,4(n+3)2164n21)

sumf = Sum(1/(n+3*k),(k,1,n))
result=sumf.euler_maclaurin()

所以: lim ⁡ n → + ∞ ∑ k = 1 n 1 n + 3 k = lim ⁡ n → + ∞ ( log ⁡ ( 4 n ) 3 − log ⁡ ( n + 3 ) 3 + 1 2 ( n + 3 ) + 1 8 n ) = 1 3 log ⁡ ( 4 ) \mathop {\lim }\limits_{n \to + \infty } \sum\limits_{k = 1}^n {{1 \over {n + 3k}}} = \mathop {\lim }\limits_{n \to + \infty } \left( {{{\log \left( {4n} \right)} \over 3} - {{\log \left( {n + 3} \right)} \over 3} + {1 \over {2\left( {n + 3} \right)}} + {1 \over {8n}}} \right) = {1 \over 3}\log \left( 4 \right) n+limk=1nn+3k1=n+lim(3log(4n)3log(n+3)+2(n+3)1+8n1)=31log(4)

这个取值与前面数值计算符合的。

4. 定积分求解

∫ 0 2 ∣ 1 − x ∣ d x \int_0^2 {\left| {1 - x} \right|dx} 021xdx

◎ 求解:

题目所求的定积分实际上是下面函数与x轴包含的面积,根据给定的参数可以知道这个面积为1,所以: ∫ 0 2 ∣ 1 − x ∣ d x = 1 \int_0^2 {\left| {1 - x} \right|dx} = 1 021xdx=1

▲ 图1.4.1 定积分图像

▲ 图1.4.1 定积分图像

5. 求函数高阶导数

f ( x ) = sin ⁡ ( x 3 ) ,    f ( 15 ) ( 0 ) = ? f\left( x \right) = \sin \left( {x^3 } \right),\,\,f^{\left( {15} \right)} \left( 0 \right) = ? f(x)=sin(x3),f(15)(0)=?

◎ 求解:

sin ⁡ ( x 3 ) \sin \left( {x^3 } \right) sin(x3)进行台劳级数展开:
x 3 − x 9 6 + x 15 120 + O ( x 20 ) x^3 - {{x^9 } \over 6} + {{x^{15} } \over {120}} + O\left( {x^{20} } \right) x36x9+120x15+O(x20)

所以: f ( 15 ) ( 0 ) = 1 120 f^{\left( {15} \right)} \left( 0 \right) = {1 \over {120}} f(15)(0)=1201

result = sin(x**3).series(x, 0, 20)
print_latex(result)
n,k,x = symbols('n,k,x')
result = integrate(abs(1-x), (x,0,2))

6. 求解积分函数导数

d d x ∫ x 2 x 3 sin ⁡ t t d t {d \over {dx}}\int_{x^2 }^{x^3 } {{{\sin t} \over t}dt} dxdx2x3tsintdt

◎ 求解:

− 2 sin ⁡ ( x 2 ) x + 3 sin ⁡ ( x 3 ) x - {{2\sin \left( {x^2 } \right)} \over x} + {{3\sin \left( {x^3 } \right)} \over x} x2sin(x2)+x3sin(x3)

n,k,x,t = symbols('n,k,x,t')
result = integrate(sin(t)/t, (t,x**2,x**3))
result = result.diff(x)

7. 定积分求解

∫ 0 π x ⋅ ( sin ⁡ x ) 2 d x \int_0^\pi {x \cdot \left( {\sin x} \right)^2 dx} 0πx(sinx)2dx

◎ 求解:
n,k,x,t = symbols('n,k,x,t')
result = integrate(x*(sin(x)**2),(x,0,pi))

∫ 0 π x ⋅ ( sin ⁡ x ) 2 d x = π 2 4 \int_0^\pi {x \cdot \left( {\sin x} \right)^2 dx} = {{\pi ^2 } \over 4} 0πx(sinx)2dx=4π2

8. 求解微分方程解

  常微分方程 y ′ + y = e − x y' + y = e^{ - x} y+y=ex满足 y ( 0 ) = 0 y\left( 0 \right) = 0 y(0)=0的解 y = y ( x ) y = y\left( x \right) y=y(x)的拐点的横坐标为        

◎ 求解:

常微分方程的通解为: y ( x ) = ( C 1 + x ) e − x y\left( x \right) = \left( {C_1 + x} \right)e^{ - x} y(x)=(C1+x)ex

n,k,x,t = symbols('n,k,x,t')
y = Function('y')
diffeq = Eq(y(x).diff(x)+y(x), exp(-x))
result = dsolve(diffeq,y(x))

根据 y ( 0 ) = 0 y\left( 0 \right) = 0 y(0)=0,可以得到: 0 = ( C 1 + 0 ) ⋅ e − 0 = C 1 0 = \left( {C_1 + 0} \right) \cdot e^{ - 0} = C_1 0=(C1+0)e0=C1,所以常微分方程的完全解为: y ( x ) = x ⋅ e − x y\left( x \right) = x \cdot e^{ - x} y(x)=xex

改函数对应的拐点 x 0 x_0 x0满足: y ′ ′ ( x 0 ) = 0 y''\left( {x_0 } \right) = 0 y(x0)=0 y ′ ′ ( x ) = ( x − 2 ) e − x y''\left( x \right) = \left( {x - 2} \right)e^{ - x} y(x)=(x2)ex

可以得到: x 0 = 2 x_0 = 2 x0=2

9. 求解曲线弧长

  求解下面曲线段的弧长:

y = 2 x 3 2 ,    ( 0 ≤ x ≤ 1 ) y = 2x^{{3 \over 2}} ,\,\,\left( {0 \le x \le 1} \right) y=2x23,(0x1)

◎ 求解:

▲ 图1.9.1 曲线函数波形

▲ 图1.9.1 曲线函数波形

曲线的 y = y ( x ) y = y\left( x \right) y=y(x)对应的弧长公示为: L 0 , 1 = ∫ 0 1 1 + y ′ ( x ) 2 d x L_{0,1} = \int_0^1 {\sqrt {1 + y'\left( x \right)^2 } dx} L0,1=011+y(x)2 dx

上面公示的不定积分为:

L ( x ) = x 9 x 2 + 1 2 + log ⁡ ( x + x 2 + 1 ) 6 ,    x ≥ 0 L\left( x \right) = {{x\sqrt {9x^2 + 1} } \over 2} + {{\log \left( {x + \sqrt {x^2 + 1} } \right)} \over 6},\,\,x \ge 0 L(x)=2x9x2+1 +6log(x+x2+1 ),x0

定积分: L ( 1 ) = a s i n h ( 3 ) 6 + 10 2 = log ⁡ ( 3 + 10 ) 6 + 10 2 L\left( 1 \right) = {{{\mathop{\rm asinh}\nolimits} \left( 3 \right)} \over 6} + {{\sqrt {10} } \over 2} = {{\log \left( {3 + \sqrt {10} } \right)} \over 6} + {{\sqrt {10} } \over 2} L(1)=6asinh(3)+210 =6log(3+10 )+210

n,k,x,t = symbols('n,k,x,t')
result = integrate(sqrt(1+(3*x)**2),(x,0,1))

10. 分析级数无穷小阶次

  设当 x → 0 x \to 0 x0时,下面函数为 p p p阶无穷小,则 p = p = p=        

( sin ⁡ x x ) 1 3 − e − x 2 3 \left( {{{\sin x} \over x}} \right)^{{1 \over 3}} - e^{ - {{x^2 } \over 3}} (xsinx)31e3x2

◎ 求解:

分别将表达式的两项在0点进行台劳级数展开: ( sin ⁡ x x ) 1 3    = 1 − 0.000308641975308642 x 4.0 − 0.0555555555555556 x 2.0 + O ( x 5 ) \left( {{{\sin x} \over x}} \right)^{{1 \over 3}} \,\, = 1 - 0.000308641975308642x^{4.0} - 0.0555555555555556x^{2.0} + O\left( {x^5 } \right) (xsinx)31=10.000308641975308642x4.00.0555555555555556x2.0+O(x5)

e − x 2 3 = 1 − x 2 3 + x 4 18 + O ( x 5 ) e^{ - {{x^2 } \over 3}} = 1 - {{x^2 } \over 3} + {{x^4 } \over {18}} + O\left( {x^5 } \right) e3x2=13x2+18x4+O(x5)

它们之间的差对应的无穷小量的阶次 p = 2 p = 2 p=2

 

§02 答题


共8题,写出详细的计算过程和必要的根据!

11. (10分)

  讨论 p p p 取何值时,下面广义积分是收敛的。 ∫ 0 + ∞ x p ln ⁡ x ( 1 + x 2 ) 2 d x \int_0^{ + \infty } {{{x^p \ln x} \over {\left( {1 + x^2 } \right)^2 }}dx} 0+(1+x2)2xplnxdx

◎ 求解:

▲ p值不同对应的积分

▲ p值不同对应的积分

12.(10分)

  求数列 { n 1 / n } ,    ( n = 1 , 2 , 3 ⋯ ) \left\{ {n^{1/n} } \right\},\,\,\left( {n = 1,2,3 \cdots } \right) {n1/n},(n=1,2,3)的最大项的值。

◎ 求解

数量 { n 1 / n } ,    ( n = 1 , 2 , 3 ⋯ ) \left\{ {n^{1/n} } \right\},\,\,\left( {n = 1,2,3 \cdots } \right) {n1/n},(n=1,2,3) 的取值变化如下图所示:

▲ N值对应函数曲线

▲ N值对应函数曲线

d d n ( n 1 / n ) = n 1 n ( − log ⁡ ( n ) n 2 + 1 n 2 ) {d \over {dn}}\left( {n^{1/n} } \right) = n^{{1 \over n}} \left( { - {{\log \left( n \right)} \over {n^2 }} + {1 \over {n^2 }}} \right) dnd(n1/n)=nn1(n2log(n)+n21)

可以看到 n = e n = e n=e附近, n 1 / n n^{1/n} n1/n的取值最大值,综上判断,可以知道序列的最大值出现在 n = 3 n = 3 n=3,对应的最大值为: 3 1 / 3 ≈ 1.4422 3^{1/3} \approx 1.4422 31/31.4422

13. (13分)

  函数 f ( x ) = { e 1 x ,    x ≠ 0 0 ,      x = 0 f\left( x \right) = \left\{ \begin{matrix} {e^{{1 \over x}} ,\,\,x \ne 0}\\{0,\,\,\,\,x = 0}\\\end{matrix} \right. f(x)={ex1,x=00,x=0  讨论函数 f ( x ) f\left( x \right) f(x)的连续性,并求 f ( x ) f\left( x \right) f(x)的单调区间、极值点与极值、凸性区间、拐点和渐进线。

● 求解:

f ( x ) f\left( x \right) f(x)在0附近函数图像,可以知道改函数在0点附近不连续。
▲ f(x)在0附近的函数图像

▲ f(x)在0附近的函数图像

下图是 1 / x 1/x 1/x在0附近的函数图像。
▲ 1/x在0附近的函数图像

▲ 1/x在0附近的函数图像

Ⅰ.区间 0 ∞

f ′ ( x ) = − e 1 x x 2 f'\left( x \right) = - {{e^{{1 \over x}} } \over {x^2 }} f(x)=x2ex1

f ′ ′ ( x ) = ( 2 + 1 x ) e 1 x x 3 f''\left( x \right) = {{\left( {2 + {1 \over x}} \right)e^{{1 \over x}} } \over {x^3 }} f(x)=x3(2+x1)ex1

x > 0 x > 0 x>0 x < 0 x < 0 x<0区间内,函数是单调下降,下凹,渐进性是x轴。

14. (12分)

  设曲线段 Γ \Gamma Γ 为圆心在点(0,1)的单位圆周位于正方形 0 ≤ x ≤ 1 ,    0 ≤ y ≤ 1 0 \le x \le 1,\,\,0 \le y \le 1 0x1,0y1的部分,平面区域 D D D为由 Γ \Gamma Γ x x x轴以及直线 x = 1 x = 1 x=1 围城的有界区域。

▲ 图2.4.1 曲线段Gama

▲ 图2.4.1 曲线段Gama

  (I) 求区域 D D D x x x轴旋转一周所产生的旋转体体积;
  (II)求曲线段 Γ \Gamma Γ x x x 轴旋转一周所产生的旋转面面积;

● 求解:
Ⅰ.求解旋转体体积

V = ∫ 0 π 2 π ( 1 − cos ⁡ θ ) 2 ⋅ cos ⁡ θ ⋅ d θ = π ( − π 2 + 5 3 ) V = \int_0^{{\pi \over 2}} {\pi \left( {1 - \cos \theta } \right)^2 \cdot \cos \theta \cdot d\theta } = \pi \left( { - {\pi \over 2} + {5 \over 3}} \right) V=02ππ(1cosθ)2cosθdθ=π(2π+35)

▲ 图2.4.2 另外一种分析方法

▲ 图2.4.2 另外一种分析方法

V = ∫ 0 1 π [ 1 − ( 1 − x 2 ) 0.5 ] 2 d x = π ( − π 2 + 5 3 ) V = \int_0^1 {\pi \left[ {1 - \left( {1 - x^2 } \right)^{0.5} } \right]^2 dx} = \pi \left( { - {\pi \over 2} + {5 \over 3}} \right) V=01π[1(1x2)0.5]2dx=π(2π+35)

Ⅱ.求解旋转体面积

S = ∫ 0 π 2 2 π ⋅ ( 1 − cos ⁡ ( θ ) ) ⋅ d x = 2 π ( − 1 + π 2 ) S = \int_0^{{\pi \over 2}} {2\pi \cdot \left( {1 - \cos \left( \theta \right)} \right) \cdot dx = } 2\pi \left( { - 1 + {\pi \over 2}} \right) S=02π2π(1cos(θ))dx=2π(1+2π)

S = ∫ 0 1 2 π [ 1 − 1 − x 2 ] 1 − x 2 d x = 2 π ( − 1 + π 2 ) S = \int_0^1 {{{2\pi \left[ {1 - \sqrt {1 - x^2 } } \right]} \over {\sqrt {1 - x^2 } }}dx = } 2\pi \left( { - 1 + {\pi \over 2}} \right) S=011x2 2π[11x2 ]dx=2π(1+2π)

15. (10分)

  求常微分方程的初值问题的解 ( x < 1 x < 1 x<1)。

{ 1 + ( y ′ ) 2 = ( 1 − x ) ⋅ y ′ ′ y ( 0 ) = 0                              y ′ ( 0 ) = 0                              \left\{ \begin{matrix} {\sqrt {1 + \left( {y'} \right)^2 } = \left( {1 - x} \right) \cdot y''}\\{y\left( 0 \right) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{y'\left( 0 \right) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\end{matrix} \right. 1+(y)2 =(1x)yy(0)=0y(0)=0

● 求解:

16. (5分)

  设 f ∈ C ( 0 , + ∞ ) f \in C\left( {0, + \infty } \right) fC(0,+), 并且 ∀ a > 0 , b > 1 \forall a > 0,b > 1 a>0,b>1,都有积分 ∫ a a b f ( x ) d x \int_a^{ab} {f\left( x \right)dx} aabf(x)dx a a a 无关。
  求证:存在常数 C C C,使得 f ( x ) = C x ,    x ∈ ( 0 , + ∞ ) f\left( x \right) = {C \over x},\,\,x \in \left( {0, + \infty } \right) f(x)=xC,x(0,+)

17. (5分)

  设 f ( x ) f\left( x \right) f(x) [ 0 , 1 ] \left[ {0,1} \right] [0,1] 上非负连续, 且满足 : f 2 ( x ) ≤ 1 + 2 ∫ 0 x f ( t ) d t ,    x ∈ [ 0 , 1 ] f^2 \left( x \right) \le 1 + 2\int_0^x {f\left( t \right)dt} ,\,\,x \in \left[ {0,1} \right] f2(x)1+20xf(t)dt,x[0,1]  证明: f ( x ) ≤ 1 + x ,    x ∈ [ 0 , 1 ] f\left( x \right) \le 1 + x,\,\,x \in \left[ {0,1} \right] f(x)1+x,x[0,1]

18. (5分)

  设: p ( x ) = x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 p\left( x \right) = x^n + a_{n - 1} x^{n - 1} + \cdots + a_1 x + a_0 p(x)=xn+an1xn1++a1x+a0 为实系数 n n n 次多项式。若 p ( x ) ≥ 0 ,    x ∈ ( − ∞ , + ∞ ) p\left( x \right) \ge 0,\,\,x \in \left( { - \infty , + \infty } \right) p(x)0,x(,+)

  证明: p ( x ) + p ′ ( x ) + ⋯ + p ( n ) ( x ) ≥ 0 ,    x ∈ ( − ∞ , + ∞ ) p\left( x \right) + p'\left( x \right) + \cdots + p^{\left( n \right)} \left( x \right) \ge 0,\,\,x \in \left( { - \infty , + \infty } \right) p(x)+p(x)++p(n)(x)0,x(,+)

  这里 p ′ ( x ) , p ′ ′ ( x ) , ⋯   , p ( n ) ( x ) p'\left( x \right),p''\left( x \right), \cdots ,p^{\left( n \right)} \left( x \right) p(x),p(x),,p(n)(x)表示 p ( x ) p\left( x \right) p(x)的一阶、二阶以及 n n n阶导数。

● 证明:

证明过程请参见: 正值实系数多项式函数所对应的导数累加和是否非负?

 

§03 加题


本题全对才给分,其分数不计入总评,仅用于评判(A+)

1. 附加题内容

  设 h > 0 h > 0 h>0 f ( x ) f\left( x \right) f(x)为闭区间 [ − h , h ] \left[ { - h,h} \right] [h,h]上的无穷可导函数,且 ∀ x ∈ [ 0 , h ] \forall x \in \left[ {0,h} \right] x[0,h],以及任意的非负整数 n n n,都有 f ( n ) ( x ) ≥ 0 f^{\left( n \right)} \left( x \right) \ge 0 f(n)(x)0。 记 r n ( x ) = 1 n ! ∫ 0 x ( x − t ) n f ( n + 1 ) ( t ) d t r_n \left( x \right) = {1 \over {n!}}\int_0^x {\left( {x - t} \right)^n f^{\left( {n + 1} \right)} \left( t \right)dt} rn(x)=n!10x(xt)nf(n+1)(t)dt  求证: ∀ x ∈ ( 0 , h ) \forall x \in \left( {0,h} \right) x(0,h),均有 lim ⁡ n → + ∞ r n ( x ) = 0 \mathop {\lim }\limits_{n \to + \infty } r_n \left( x \right) = 0 n+limrn(x)=0

● 证明:

本题的证明过程参见: 期末考试中微积分的证明题的分析:Taylor级数展开

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值