SS-CA-APPLE:什么是复数?如何进行复数四则运算?

数学原理
目 录
Contents
复数的概念
复数的代数运算
应用举例
复数计算,共轭
证明题
信号与系统
复数信号
典型复数信号
作业练习
基本复数计算与性质
实验题

 

§01 学原理


1.1 复数的概念

1.1.1 单位虚数

  最早为了求解代数方程的需要,人们引入了单位虚数 i i i (或者记为 j j j ),定义: i 2 = − 1 i^2 = - 1 i2=1 所以 ± i \pm i ±i 是方程 x 2 + 1 = 0 x^2 + 1 = 0 x2+1=0 的两个根。

  通常使用 C C C 表示 复数集合

1.1.2 复数

(1)定义

  对于任意两个 实数 x , y ∈ R x,y \in R x,yR ,我们称 z = x + i y z = x + iy z=x+iy 或者 z = x + y i z = x + yi z=x+yi复数,其中 x , y x,y x,y 分别称为 z z z实部虚部,记做 x = R e ( z ) ,    y = I m ( z ) x = {\mathop{\rm Re}\nolimits} \left( z \right),\,\,y = {\mathop{\rm Im}\nolimits} \left( z \right) x=Re(z),y=Im(z) x = 0 , y ≠ 0 x = 0,y \ne 0 x=0,y=0 时,对应的 z = i y z = iy z=iy 称为纯虚数;当 x ≠ 0 , y = 0 x \ne 0,y = 0 x=0,y=0 时, 对应 z = x + i 0 z = x + i0 z=x+i0 看做实数 x x x

(2)相等判断

  两个复数可以判断是否相等,但不能够像实数那样比较大小

  • 两个复数相等:它们实部和虚部分别相等;
  • 复数等于0:它的实部和虚部分别等于0;

虽然可以人为定义两个复数顺序顺序,但缺乏一种复数的标准排序Canonical Ordering ).

▲ 图1.1.1  复数是对于原来实数进行扩充

▲ 图1.1.1 复数是对于原来实数进行扩充

1.2 复数的代数运算

1.2.1 加减乘除运算

  两个复数 z 1 = x 1 + i y 1 ,   z 2 = x 2 + i y 2 z_1 = x_1 + iy_1 ,\,z_2 = x_2 + iy_2 z1=x1+iy1,z2=x2+iy2 对应的加减乘除运算如下:

(1)加、减运算

z 1 ± z 2 = ( x 1 + i y 1 ) ± ( x 2 + i y 2 ) = ( x 1 ± x 2 ) + i ( y 1 ± y 2 ) z_1 \pm z_2 = \left( {x_1 + iy_1 } \right) \pm \left( {x_2 + iy_2 } \right) = \left( {x_1 \pm x_2 } \right) + i\left( {y_1 \pm y_2 } \right) z1±z2=(x1+iy1)±(x2+iy2)=(x1±x2)+i(y1±y2)

  上面两式成为复数 z 1 , z 2 z_1 ,z_2 z1,z2

(2)乘、除运算
 Ⅰ.复数除法

z 1 ⋅ z 2 = ( x 1 + i y 1 ) ⋅ ( x 2 + i y 2 ) = ( x 1 x 2 − y 1 y 2 ) + i ( x 2 y 1 + x 1 y 2 ) z_1 \cdot z_2 = \left( {x_1 + iy_1 } \right) \cdot \left( {x_2 + iy_2 } \right) = \left( {x_1 x_2 - y_1 y_2 } \right) + i\left( {x_2 y_1 + x_1 y_2 } \right) z1z2=(x1+iy1)(x2+iy2)=(x1x2y1y2)+i(x2y1+x1y2)

 Ⅱ.复数除法

  将满足 z 2 z = z 1 ,    ( z 2 ≠ 0 ) z_2 z = z_1 ,\,\,\left( {z_2 \ne 0} \right) z2z=z1,(z2=0) 的复数 z z z 称为 z 1 z_1 z1 除以 z 2 z_2 z2 的商,记做 z = z 1 z 2 z = {{z_1 } \over {z_2 }} z=z2z1 ,根据这个定义,可以推导出: z = z 1 z 2 = x 1 x 2 + y 1 y 2 x 2 2 + y 2 2 + i x 2 y 1 − x 1 y 2 x 2 2 + y 2 2 z = {{z_1 } \over {z_2 }} = {{x_1 x_2 + y_1 y_2 } \over {x_2^2 + y_2^2 }} + i{{x_2 y_1 - x_1 y_2 } \over {x_2^2 + y_2^2 }} z=z2z1=x22+y22x1x2+y1y2+ix22+y22x2y1x1y2

这个公式可以由后面的共轭复数方便推导出来。

1.2.2 运算律

  复数的代数运算满足交换律(Commutative law)、结合律(Law of Combination)、分配律(Distributive Law)等代数 运算律
z 1 + z 2 = z 2 + z 1 ,    z 1 z 2 = z 2 z 1 z_1 + z_2 = z_2 + z_1 ,\,\,z_1 z_2 = z_2 z_1 z1+z2=z2+z1,z1z2=z2z1 z 1 + ( z 2 + z 3 ) = ( z 1 + z 2 ) + z 3 z_1 + \left( {z_2 + z_3 } \right) = \left( {z_1 + z_2 } \right) + z_3 z1+(z2+z3)=(z1+z2)+z3 z 1 ( z 2 z 3 ) = ( z 1 z 2 ) z 3 z_1 \left( {z_2 z_3 } \right) = \left( {z_1 z_2 } \right)z_3 z1(z2z3)=(z1z2)z3 z 1 ( z 2 + z 3 ) = z 1 z 2 + z 1 z 3 z_1 \left( {z_2 + z_3 } \right) = z_1 z_2 + z_1 z_3 z1(z2+z3)=z1z2+z1z3

1.2.3 共轭复数

(1)定义

  我们把实部相等、虚部绝对值相等符合相反的两个附属成为共轭复数(Complex Conjugate),与 z z z 对应的共轭复数记为 z ˉ \bar z zˉ ,则: z = x + i y ,    z ˉ = x − i y z = x + iy,\,\,\bar z = x - iy z=x+iy,zˉ=xiy

(2)性质

  共轭复数有以下性质:

 

§02 用举例


2.1 复数计算,共轭

2.1.1 例1

  设 z 1 = 5 − 5 i ,    z 2 = − 3 + 4 i z_1 = 5 - 5i,\,\,z_2 = - 3 + 4i z1=55i,z2=3+4i ,求 z 1 z 2   , 以 及 ( z 1 z 2 ) ‾ 的 取 值 。 {{z_1 } \over {z_2 }}\, ,以及\overline {\left( {{{z_1 } \over {z_2 }}} \right)}的取值。 z2z1(z2z1)

  求解:
z 1 z 2 = 5 − 5 i − 3 + 4 i = ( 5 − 5 i ) ( − 3 − 4 i ) ( − 3 + 4 i ) ( − 3 − 4 i ) {{z_1 } \over {z_2 }} = {{5 - 5i} \over { - 3 + 4i}} = {{\left( {5 - 5i} \right)\left( { - 3 - 4i} \right)} \over {\left( { - 3 + 4i} \right)\left( { - 3 - 4i} \right)}} z2z1=3+4i55i=(3+4i)(34i)(55i)(34i) = ( − 15 − 20 ) + ( 15 − 20 ) i 25 = − 7 5 − 1 5 i = {{\left( { - 15 - 20} \right) + \left( {15 - 20} \right)i} \over {25}} = - {7 \over 5} - {1 \over 5}i =25(1520)+(1520)i=5751i

  所以: ( z 1 z 2 ) ‾ = − 7 5 + 1 5 i \overline {\left( {{{z_1 } \over {z_2 }}} \right)} = - {7 \over 5} + {1 \over 5}i (z2z1)=57+51i

from headm import *
z1 = 5-5j
z2 = -3+4j
printf(z1, z2, z1/z2, conj(z1/z2))
(5-5j)
(-3+4j)
(-1.4-0.2j)
(-1.4+0.2j)

2.1.2 例2

  设 z = − 1 i − 3 i 1 − i z = - {1 \over i} - {{3i} \over {1 - i}} z=i11i3i R e ( z ) ,   I m ( z ) {\mathop{\rm Re}\nolimits} \left( z \right),\,{\mathop{\rm Im}\nolimits} \left( z \right) Re(z),Im(z) z ⋅ z ˉ z \cdot \bar z zzˉ

  求解:
z = − 1 i − 3 i 1 − i = i i ( − i ) − 3 i ( 1 + i ) ( 1 − i ) ( 1 + i ) z = - {1 \over i} - {{3i} \over {1 - i}} = {i \over {i\left( { - i} \right)}} - {{3i\left( {1 + i} \right)} \over {\left( {1 - i} \right)\left( {1 + i} \right)}} z=i11i3i=i(i)i(1i)(1+i)3i(1+i) = 1 − ( − 3 2 + 3 2 i ) = 3 2 − 1 2 i = 1 - \left( { - {3 \over 2} + {3 \over 2}i} \right) = {3 \over 2} - {1 \over 2}i =1(23+23i)=2321i

  所以: R e ( z ) = 3 2 ,    I m ( z ) = − 1 2 {\mathop{\rm Re}\nolimits} \left( z \right) = {3 \over 2},\,\,{\mathop{\rm Im}\nolimits} \left( z \right) = - {1 \over 2} Re(z)=23,Im(z)=21 z ⋅ z ˉ = ( 3 2 ) 2 + ( − 1 2 ) 2 = 5 2 z \cdot \bar z = \left( {{3 \over 2}} \right)^2 + \left( { - {1 \over 2}} \right)^2 = {5 \over 2} zzˉ=(23)2+(21)2=25

from headm import *

z=-1/1j - 3j/(1-1j)
printf(z)
printf(real(z), imag(z))
printf(z*conj(z))
(1.5-0.5j)
1.5 -0.5
(2.5+0j)

2.2 证明题

2.2.1 例3

  设 z 1 = x 1 + i y 1 ,    z 2 = x 2 + i y 2 z_1 = x_1 + iy_1 ,\,\,z_2 = x_2 + iy_2 z1=x1+iy1,z2=x2+iy2 为两个任意复数, 证明 z 1 z ˉ 2 + z ˉ 1 z 2 = 2 R e ( z 1 z ˉ 2 ) z_1 \bar z_2 + \bar z_1 z_2 = 2{\mathop{\rm Re}\nolimits} \left( {z_1 \bar z_2 } \right) z1zˉ2+zˉ1z2=2Re(z1zˉ2)

  证明:
z 1 z ˉ 2 + z ˉ 1 z 2 = z 1 z ˉ 2 + z 1 z ˉ 2 ‾ = 2 R e ( z 1 z ˉ 2 ) z_1 \bar z_2 + \bar z_1 z_2 = z_1 \bar z_2 + \overline {z_1 \bar z_2 } = 2{\mathop{\rm Re}\nolimits} \left( {z_1 \bar z_2 } \right) z1zˉ2+zˉ1z2=z1zˉ2+z1zˉ2=2Re(z1zˉ2)

  或者:
z 1 z ˉ 2 + z ˉ 1 z 2 = ( x 1 + i y 1 ) ( x 2 − i y 2 ) + ( x 1 − i y 1 ) ( x 2 + i y 2 ) z_1 \bar z_2 + \bar z_1 z_2 = \left( {x_1 + iy_1 } \right)\left( {x_2 - iy_2 } \right) + \left( {x_1 - iy_1 } \right)\left( {x_2 + iy_2 } \right) z1zˉ2+zˉ1z2=(x1+iy1)(x2iy2)+(x1iy1)(x2+iy2) = ( x 1 x 2 + y 1 y 2 ) + i ( x 2 y 1 − x 1 y 2 ) + ( x 1 x 2 + y 1 y 2 ) + i ( x 1 y 2 − x 2 y 1 ) = \left( {x_1 x_2 + y_1 y_2 } \right) + i\left( {x_2 y_1 - x_1 y_2 } \right) + \left( {x_1 x_2 + y_1 y_2 } \right) + i\left( {x_1 y_2 - x_2 y_1 } \right) =(x1x2+y1y2)+i(x2y1x1y2)+(x1x2+y1y2)+i(x1y2x2y1) = 2 ( x 1 x 2 + y 1 y 2 ) = 2 R e ( z 1 z ˉ 2 ) = 2\left( {x_1 x_2 + y_1 y_2 } \right) = 2{\mathop{\rm Re}\nolimits} \left( {z_1 \bar z_2 } \right) =2(x1x2+y1y2)=2Re(z1zˉ2)

 

§03 号与系统


  信号与系统中,信号信号往往表示成随着时间 t t t 、空间坐标 ( x , y ) \left( {x,y} \right) (x,y) 、或者频率 ω \omega ω 变化的物理量 f ( t ) f\left( t \right) f(t) 。比如声音(气压物理量)、图像(亮度物理量)、频谱等。这些物理量往往取单个实数,或者多个实数(比如图像中的RGB分量)。

3.1 复数信号

  表征信号函数自变量因变量可以取实数或者复数。通常情况下,我们碰到的信号都是实变量的实数信号。但在很多场合,我们会使用到复数变量、复数取值的信号。

▲ 图A3.1.1 信号的自变量与因变量

▲ 图A3.1.1 信号的自变量与因变量

3.1.1 复数取值信号

  如果信号物理量 x ( t ) x\left( t \right) x(t) 取值为复数,则成为 复数信号 。它可以分解成实部和虚部: x ( t ) = x R ( t ) + j x I ( t ) x\left( t \right) = x_R \left( t \right) + jx_I \left( t \right) x(t)=xR(t)+jxI(t)

  原则上,任何两个独立的信号,都可以组成复数信号。在实践中,这两个信号往往从不同的角度反映信息的各个侧面。

3.1.2 自变量为复数的函数

  在信号与系统中,普通的信号经过拉普拉斯变换(Laplace Transform)、z变换(z-transform)之后,所得到的结果都是自变量为复数的函数。这使得它们可以表达信号的范围、结果的简洁性都得到了提高。

3.2 典型复数信号

  下面给出一些典型的复数信号。

3.2.1 频谱信号

  对于任意信号 f ( t ) f\left( t \right) f(t) ,它的频谱 F ( ω ) = F T [ f ( t ) ] F\left( \omega \right) = FT\left[ {f\left( t \right)} \right] F(ω)=FT[f(t)] 便是一个关于频率 ω \omega ω 的复数信号。它的实部和虚部分别由 R e [ F ( ω ) ] = ∫ − ∞ + ∞ f ( t ) ⋅ cos ⁡ ( ω t ) d t {\mathop{\rm Re}\nolimits} \left[ {F\left( \omega \right)} \right] = \int_{ - \infty }^{ + \infty } {f\left( t \right) \cdot \cos \left( {\omega t} \right)dt} Re[F(ω)]=+f(t)cos(ωt)dt I m [ F ( ω ) ] = − ∫ − ∞ + ∞ f ( t ) sin ⁡ ( ω t ) d t {\mathop{\rm Im}\nolimits} \left[ {F\left( \omega \right)} \right] = - \int_{ - \infty }^{ + \infty } {f\left( t \right)\sin \left( {\omega t} \right)dt} Im[F(ω)]=+f(t)sin(ωt)dt计算而得。

▲ 图3.2.1 信号时域波形与频域频谱

▲ 图3.2.1 信号时域波形与频域频谱

3.2.2 复数震荡调制

  在信号幅度调制过程中,为了防止调制后信号频谱出现“混叠”现象,可以使用复震荡信号调制。信号 f ( t ) f\left( t \right) f(t) 调制在频率为 ω c \omega _c ωc 的复震荡信号上 f m ( t ) = f ( t ) ⋅ e j ω c t f_m \left( t \right) = f\left( t \right) \cdot e^{j\omega _c t} fm(t)=f(t)ejωct 该信号的实部和虚部分别为: R e [ f m ( t ) ] = f ( t ) ⋅ cos ⁡ ( ω c t ) {\mathop{\rm Re}\nolimits} \left[ {f_m \left( t \right)} \right] = f\left( t \right) \cdot \cos \left( {\omega _c t} \right) Re[fm(t)]=f(t)cos(ωct) I m [ f m ( t ) ] = f ( t ) ⋅ sin ⁡ ( ω c t ) {\mathop{\rm Im}\nolimits} \left[ {f_m \left( t \right)} \right] = f\left( t \right) \cdot \sin \left( {\omega _c t} \right) Im[fm(t)]=f(t)sin(ωct)

▲ 图3.1.1 复数幅度调制

▲ 图3.1.1 复数幅度调制

3.2.3 解析信号

  在数学和信号处理中, 解析信号 (analytic signal)是没有负频率分量的复数信号。

  对于一个实数信号f f ( t ) f\left( t \right) f(t) ,与它相联系的解析信号定义为 f a ( t ) = f ( t ) + j [ 1 π t ∗ s ( t ) ] f_a \left( t \right) = f\left( t \right) + j\left[ {{1 \over {\pi t}} * s\left( t \right)} \right] fa(t)=f(t)+j[πt1s(t)] 解析信号的实部是信号本身,虚部是该信号的希尔伯特变换 R e [ f a ( t ) ] = f ( t ) {\mathop{\rm Re}\nolimits} \left[ {f_a \left( t \right)} \right] = f\left( t \right) Re[fa(t)]=f(t) I m [ f a ( t ) ] = ∫ − ∞ + ∞ f ( τ ) π ( t − τ ) d t {\mathop{\rm Im}\nolimits} \left[ {f_a \left( t \right)} \right] = \int_{ - \infty }^{ + \infty } {{{f\left( \tau \right)} \over {\pi \left( {t - \tau } \right)}}dt} Im[fa(t)]=+π(tτ)f(τ)dt

  如果信号是一个被调制的震荡信号, 通过求取它对应解析信号的,可以获得信号的瞬时幅度或者包络

f m ( t ) = ∣ f a ( t ) ∣ f_m \left( t \right) = \left| {f_a \left( t \right)} \right| fm(t)=fa(t)

  这使得解析信号在检测信号的局部特征、调制信号的解调等方面得到应用。

▲ 图3.2.2 信号(蓝色)与它对应的解析信号的模(红色)对应的包络线

▲ 图3.2.2 信号(蓝色)与它对应的解析信号的模(红色)对应的包络线

 

§04 业练习


4.1 基本复数计算与性质

4.1.1 复数的实部、虚部、共轭复数

  求下列复数 z z z 的实部、虚部、共轭复数。

( 1 )     1 3 + 2 i ;                               ( 2 )    1 i − 3 i 1 − i ; \left( 1 \right)\,\,\,{1 \over {3 + 2i}};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,{1 \over i} - {{3i} \over {1 - i}}; (1)3+2i1;(2)i11i3i; ( 3 )    ( 3 + 4 i ) ( 2 − 5 i ) 2 i ;            ( 4 )    i 8 − 4 i 21 + i ; \left( 3 \right)\,\,{{\left( {3 + 4i} \right)\left( {2 - 5i} \right)} \over {2i}};\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\,\,i^8 - 4i^{21} + i; (3)2i(3+4i)(25i);(4)i84i21+i;

4.1.2 复数方程

  当 x , y x,y x,y 等于什么实数时, 下面等式成立?
x + 1 + i ( y − 3 ) 5 + 3 i = 1 + i {{x + 1 + i\left( {y - 3} \right)} \over {5 + 3i}} = 1 + i 5+3ix+1+i(y3)=1+i

4.1.3 证明题

  (1) − i = i − 1 = i ˉ - i = i^{ - 1} = \bar i i=i1=iˉ
  (2) ∣ z ∣ 2 = z ⋅ z ˉ \left| z \right|^2 = z \cdot \bar z z2=zzˉ
  (3) z 1 ± z 2 ‾ = z ˉ 1 ± z ˉ 2 \overline {z_1 \pm z_2 } = \bar z_1 \pm \bar z_2 z1±z2=zˉ1±zˉ2
  (4) R e ( z ) = 1 2 ( z + z ˉ ) ,    I m ( z ) = 1 2 i ( z − z ˉ ) {\mathop{\rm Re}\nolimits} \left( z \right) = {1 \over 2}\left( {z + \bar z} \right),\,\,{\mathop{\rm Im}\nolimits} \left( z \right) = {1 \over {2i}}\left( {z - \bar z} \right) Re(z)=21(z+zˉ),Im(z)=2i1(zzˉ)

4.2 实验题

4.2.1 复数基本运算

  请使用MATLAB,或Python语言,计算前面作业题【4.1.1】中复数的实部、虚部、共轭复数。

4.2.2 通过解析信号获得包络线

(1)调制信号

  信号 f ( t ) = 1 + 0.8 × sin ⁡ ( t ) ,    t ∈ ( 0 , 4 π ) f\left( t \right) = 1 + 0.8 \times \sin \left( t \right),\,\,t \in \left( {0,4\pi } \right) f(t)=1+0.8×sin(t),t(0,4π) 调制在载波信号 f c ( t ) = sin ⁡ ( 5 t ) f_c \left( t \right) = \sin \left( {5t} \right) fc(t)=sin(5t) 上,得到的调制信号

f m ( t ) = [ 1 + 0.8 sin ⁡ ( t ) ] ⋅ sin ⁡ ( 5 t ) ,    t ∈ ( 0 , 4 π ) f_m \left( t \right) = \left[ {1 + 0.8\sin \left( t \right)} \right] \cdot \sin \left( {5t} \right),\,\,t \in \left( {0,4\pi } \right) fm(t)=[1+0.8sin(t)]sin(5t),t(0,4π)

▲ 图4.2.1 信号(蓝色)以及调制后的波形(橙色)

▲ 图4.2.1 信号(蓝色)以及调制后的波形(橙色)

  可以看到该调制信号 f m ( t ) f_m \left( t \right) fm(t) 的包络线就是 f ( t ) f\left( t \right) f(t) 。如何通过 f m ( t ) f_m \left( t \right) fm(t) 获得信号的包络线呢?

(2)获得解析信号

可以使用 scipy.signal.hilbert() 函数获得信号 f ( t ) f\left( t \right) f(t) 的解析信号 f a ( t ) = f ( t ) + i ⋅ f h ( t ) f_a \left( t \right) = f\left( t \right) + i \cdot f_h \left( t \right) fa(t)=f(t)+ifh(t) 。其中 f h ( t ) = 1 π t ∗ f ( t ) = ∫ − ∞ + ∞ f ( τ ) π ( t − τ ) d τ f_h \left( t \right) = {1 \over {\pi t}} * f\left( t \right) = \int_{ - \infty }^{ + \infty } {{{f\left( \tau \right)} \over {\pi \left( {t - \tau } \right)}}d\tau } fh(t)=πt1f(t)=+π(tτ)f(τ)dτ 通过求取 f a ( t ) f_a \left( t \right) fa(t) 的模( ∥ f a ( t ) ∥ \left\| {f_a \left( t \right)} \right\| fa(t) )获得信号的包络线。

▲ 调制信号对应的解析信号的实部和虚部信号

▲ 调制信号对应的解析信号的实部和虚部信号

from headm import *
import scipy.signal

t = linspace(0, 4*pi, 3000)

f1 = (1 + 0.8*sin(t))
f2 = sin(t * 5)*f1
f3 = scipy.signal.hilbert(f2)

plt.plot(t, imag(f3), label='Im(fa)')
plt.plot(t, real(f3), label='Re(fa)')

plt.xlabel("t")
plt.ylabel("f1,f2")
plt.grid(True)
plt.legend(loc='upper right')
plt.tight_layout()
plt.show()


■ 相关文献链接:

● 相关图表链接:

相关阅读:

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值