第十九届全国大学生智能汽车竞赛-地平线创意组智慧医疗挑战赛报名通知

 

01 慧医疗挑战赛


一、竞赛介绍

  全国大学生智能汽车竞赛是一项以"立足培养、重在参与、鼓励探索、追求卓越"为指导思想,面向全国大学生开展的具有探索性的工程实践活动。截至目前,全国大学生智能汽车竞赛已成功举办十八届,覆盖全国数百所高校,参赛学生总规模超55万人次,学生收获和竞赛声誉均保持高位。

  本次地平线创意组智慧医疗挑战赛旨在通过智能机器人在智慧医疗场景下的应用推动人工智能等相关专业“以赛促教”、“以赛促学”。竞赛主要涉及的知识点包括:移动车模的运动控制设计、AI视觉的应用开发设计、数字孪生应用以及遥操作在数字环境与物理环境下的融合。

  第十九届全国大学生智能汽车竞赛-地平线创意组智慧医疗挑战赛分为线下全国选拔赛(包括省赛和赛区赛)和全国总决赛两个阶段,参赛选手需使用OriginCar智能机器人套件参加比赛。

▲ 图1.1.1 OriginCar 智能机器人套件外观

▲ 图1.1.1 OriginCar 智能机器人套件外观

二、报名方式

  本次报名需通过地平线开发者社区-活动中心-智能车竞赛专区-点击报名(https://developer.horizon.cc/activity/id=204825652464181762)进行报名,报名时间:2023/03/15-2023/06/15

  同时,古月居社区竞赛频道(https://www.guyuehome.com/)同步提供报名须知及报名跳转链接(直接跳转地平线报名页面)。
  报名申请表模板可在百度网盘下载,该申请表在指导老师签字及院系盖章后,需作为附件在报名链接内上传。

三、参赛要求

  1、本赛项面向全国全日制在校本科生和职业院校学生。

  2、本赛项为团体赛形式,每支参赛队由不超过5名学生和不超过2名指导教师组成。学生必须是截止到2024年6月仍然在校的学生。

  3、所有参赛队必须以学校为单位进行报名,不得跨校组队。本赛项不分组别,本科及职业院校在同一组别下竞赛。

  注:山东、安徽、浙江省队伍参赛规则以省组委会公布为准。

  4、全国选拔赛环节,每所学校报名数量不设限制,但为维持公平性,同一所学校获得全国选拔赛一等奖队伍最多2支,二等奖不设限制。同一所学校最多只有1支队伍能晋级全国总决赛。全国选拔赛一等奖20%,二等奖35%,完成竞赛可授予三等奖,补赛完成可授予优秀奖,未完成竞赛没有奖。

  注:山东省不限制每所高校的报名数量,获奖比例以省组委会通知为准;浙江省、安徽省每所高校的报名数量、获奖比例以省组委会通知为准。

  5、每位学生可同时参加竞速组别和创意组别的比赛,但不能同时参加两个不同组别的创意赛。

  参赛选手报名须保证所提供的个人信息真实、准确、有效,否则取消选手参赛资格。

四、技术支持

  1、比赛流程、技术问题等请加入地平线创意组官方QQ交流群(535373387)。

  2、常见技术问题可在地平线开发者社区(https://developer.horizon.cc)、古月居社区(https://www.guyuehome.com)智能车竞赛专栏中查看。

五、培训支持

  本次竞赛提供5场免费在线直播培训。直播时间将提前在地平线公众号、古月居公众号、地平线开发者社区(https://developer.horizon.cc)、古月居社区(https://www.guyuehome.com)智能车竞赛专栏等公布。

  在线直播培训平台包括:古月学院、古月居视频号、B站等。

六、资料获取

  本次赛事相关培训资料可在古月居社区、地平线开发者社区持续更新,参赛选手可获取相关课程资源。

  同时,OriginCar智能机器人相关资料,也可在百度网盘进行下载。

  • 链接:https://pan.baidu.com/s/1FH9txTJil7aMCIUOzhkVcg?pwd=gyh1
  • 提取码:gyh1

七、其他

  赛事后续通知及规则补充,请请关注TsinghuaJoking公众号(卓晴老师)、地平线公众号、古月居公众号、地平线开发者社区(https://developer.horizon.cc )智能车竞赛专栏、古月居社区(https://www.guyuehome.com)智能车竞赛专栏等。

报名咨询:

八、直播预告


● 相关图表链接:

### 室内SLAM技术概述 室内SLAM(Simultaneous Localization And Mapping),即同时定位与地图构建,在未知环境中使设备能够实时创建环境的地图并确定自身位置。这项技术对于机器人导航、增强现实等多个领域至关重要[^2]。 ### 地平线实现方法 针对地平线公司所采用的技术方案,虽然具体细节可能因项目而异,但从一般意义上讲,基于激光雷达(LiDAR)的3D SLAM解决方案较为常见。这类方案通常依赖于高精度的距离测量数据来建立周围空间模型,并利用高效的算法处理这些信息以实现实时性能。例如,在某些应用场景下,会运用LOAM (Laser Odometry and Mapping)[^1] 或其变体LEGO- **前端测距**:通过连续扫描获取环境点云数据; - **后端优化**:使用诸如图优化(Graph Optimization)的方法最小化累积误差,确保全局一致性; - **闭环检测(Closed-loop Detection)**:识别重复访问过的区域从而修正长期漂移问题; - **多传感器融合**:结合IMU惯性测量单元或其他感知手段提高鲁棒性和准确性。 ```python import numpy as np from gtsam import * def build_graph(): graph = NonlinearFactorGraph() # Add factors to the graph here return graph def optimize(graph, initial_estimate): optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate) result = optimizer.optimize() return result ``` 此代码片段展示了如何使用GTSAM库构建非线性因子图以及执行最优化过程的一个简化版本。实际应用中还需要考虑更多因素如初始化策略、异常值剔除等。 ### 应用场景 - **服务型机器人**:清洁机器人、送货机器人可以在复杂家庭或办公场所自动移动而不碰撞障碍物; - **智能家居系统集成**:配合其他IoT设备提供更加智能化的生活体验; - **虚拟现实(VR)/增强现实(AR)**:为用户提供沉浸式的交互界面,特别是在大型建筑物内部指引方向等方面表现出色; - **工业自动化**:仓库管理中的AGV小车可以借助该技术高效运作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值