- 信号与系统 2023年春季学期期末考试命题
- 信号与系统2022年期末考试命题
- 信号与系统期末考试2020春季学期试题准备
- 信号与系统2024(春季)作业要求以及参考答案汇总
- 信号与系统期末2024年春季学期期末考试命题-正式考试试题
01 命题说明
一、命题要求
1、命题题型
本次命题是面向2024年本科“信号与系统分析”课程的期末考试题的**,模拟试题**。题目的类型、数量以及分值规划如下:
序列号 | 题目类型 | 题目数量 | 总分值 | 小分值 | 备注 |
---|---|---|---|---|---|
1 | 选择题 | 10 | 10 | 1 | 考察基本概念 |
2 | 判断对错题 | 10 | 10 | 1 | 变形的选择题 考查基本概念。 这是考察定性分析的能力。 |
3 | 填空题 | 10 | 20 | 2×5 | 简化的计算题 |
4 | 简答题 | 3 | 15 | 5 | 对于课堂内容的讨论与延伸 考察基本概念、分析以及应用的能力 判罚标准比较灵活。 |
5 | 计算题 | 5 | 25 | 5 | 变形的作业练习题 |
6 | 综合题 | 3 | 20 | 8+5+7 | 综合分析能力; 题目不难,大部分分之是作业送分题 |
2、命题内容覆盖分析
针对2024年教学内容, 下面是期末考试试题涵盖各章内容。请注意, 有的考试题目内容是涵盖多个章节的。由于存在其中随堂练习,所以期末考试内容包含期中之后的内容多一些。由于本学期因为假期安排, 放掉了三次授课(6个学时), 第八章(数字滤波器)的内容只作为考察, 不再列入考试范围。
章节 | 题目 | 总分值 | 备注 |
---|---|---|---|
第一章 | 1-2(1),2-1(1),2-8(1),3-2(2),3-3(2) | 7 | |
第二章 | 2-6(1),3-1(2),7(6) | 9 | |
第三章 | 1-8(1),1-10(1),2-2(1),2-4(1),5-2(5) | 9 | |
第四章 | 2-9(1),3-9(2),3-10(2) | 5 | |
第五章 | 1-4(1),2-7(1),3-7(2),3-8(2),4-2(5),5-3(5) | 16 | |
第六章 | 1-1(1),1-9(1),2-3(1),2-5(1),2-10(1),3-6(2),5-1(5),5-4(5),5-5(5),6-1(8),8(6) | 36 | |
第七章 | 1-3(1),1-5(1), 1-6(1),3-4(2),3-5(2),4-1(5),4-3(5) | 17 | |
第八章 | 1-7(1) | 1 | 两个基本概念 |
- A\B试卷调整说明:
最初试卷是A卷,按照以下方式将其调整到B卷。
- 大题调整:
- A卷中的大题顺序为:1,2,3,4,5,6,7,8
- B卷中的答题顺序为 :2,3,4,3,6,5,8,7
- 小题调整:
- 对应A卷中的 1,2,3,4,5中都分别有小题;将小题按照 奇数偶数对调;
3、考试相关内容
(1)考试时间地点
- 考试时间: 6月16日(星期日)
- 考试地点:
- 六教6A016:自21,22,散选
- 六教6A017:自23,24
- 六教6A018:自25,26
- 六教6A101:CDIE
(2)成绩综合与录入
(待定)
02 考试命题
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
A | C | D | C | A | D | D | D | D | C |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
× | × | × | × | √ | √ | × | √ | √ | √ |
一、选择题
- 题目要求: 单项选择题(10×1=10分。 将答案写在试卷前面的答案表格1中)
1、 下面 z z z 变换表达式中, 哪一个对应的是因果系统的系统函数 ?
答案: A。 本题从 第12次作业中第四小题 变形而来。 对于离散时间系统, 系统的因果性与系统函数的收敛域是否包含有 z 平面上的无穷远点而定。
2、 下面信号中,哪一个是能量有限 信号?
答案:C。 信号的能量定义为 ∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 d t \int_{ - \infty }^{ + \infty } {{{\left| {f\left( t \right)} \right|}^2}dt} ∫−∞+∞∣f(t)∣2dt 。 本题中的难点在于对 δ ( t ) \delta \left( t \right) δ(t) 的判断, 需要对 δ ( t ) \delta \left( t \right) δ(t) 它的采样特性进行判断。
3、 应用离散傅里叶变换(DFT)分析信号的频谱时, 下面所列写的误差哪个不会产生?
A. 频率混叠现象;
B. 频率泄露现象;
C. 栅栏现象;
D 吉布斯现象;
答案: D。 严格意义上根据傅里叶变换的对偶特性, 频率泄露现象与吉布斯现象背后的公式都是一样的, 只是在讨论频谱的误差时, 更多的使用 频率混叠,而不是吉布斯现象。
4、 下面信号的 Laplace 变换中,哪一个可以直接使用 Laplace 变换终值定理和初值定理分别确定信号的 f ( ∞ ) f\left( \infty \right) f(∞) 以及 f ( 0 + ) f\left( {{0_ + }} \right) f(0+) ?
答案:C。 这个题目最好使用排除方法。 (A)由于分子的阶次比分母高,所以无法直接使用初值定理;(B)中存在着s平面右半平面的极点,所以无法使用终值定理; (D)由于存在原点的二阶极点, 所以无法使用终值定理。 因此, 只剩下答案(C),它对应的分母实际上是 ( s + 1 ) ( s + 2 ) ( s + 3 ) \left( {s + 1} \right)\left( {s + 2} \right)\left( {s + 3} \right) (s+1)(s+2)(s+3) ,对应的极点为 − 1 , − 2 , − 3 - 1, - 2, - 3 −1,−2,−3 。
5、 如果序列 的长度为 N, 希望通过 DFT 获得 2N个频谱数据。下面哪一种对数据处理方式无法真正提高频谱的分辨率?
A. 在数据后面补充 N 个 0,形成长度为2N的序列;
B. 通过插0的方式将数据形成长度为2N的序列;
C. 将数据进行重复一个周期,形成长度为 2N 的序列;
D. 将数据进行反摺,然后与原来数据串联起来形成2N的序列;
答案:A。 这道题来自于 第14次作业第二大体中的第一小题 。 根据该小题中的(6)解答可以排除答案B。 根据(3)可以排除答案C。 答案 D由于进行了数据的反摺, 造成频谱也会圆反摺,根据这样叠加之后的数据与原来数据频谱之间就没有联系了。 所以只有答案 A是正确的。
6、 已知长度为 4 序列 x [ n ] x\left[ n \right] x[n] 如下图所示。 如果使得 x [ n ] x\left[ n \right] x[n] 与 x [ n ] x\left[ n \right] x[n] 之间的 圆卷积和线卷积的结果相同。 那么圆卷积长度 N 的最小值为:
A. 5 B. 6 C. 9 D. 7
答案:D。 这个小题来自于 第14次作业的第一小题。 。 应该是一个送分的题目。
7、 对于连续时间系统函数 H ( j ω ) H\left( {j\omega } \right) H(jω) ,下面哪一个条件不是因果系统的必要条件?
A.
H
(
j
ω
)
H\left( {j\omega } \right)
H(jω) 是实函数;
B.
H
(
j
ω
)
H\left( {j\omega } \right)
H(jω) 的模满足 佩里-维纳 准则;
C.
H
(
j
ω
)
H\left( {j\omega } \right)
H(jω) 的实部和虚部之间满足希尔伯特变换;
D.
H
(
j
ω
)
H\left( {j\omega } \right)
H(jω) 的傅里叶反变换是因果信号;
答案:A。 这是第八章关于滤波器的唯一的一个知识点的考察。
8、 已知实信号 x ( t ) , y ( t ) x\left( t \right),y\left( t \right) x(t),y(t) 之间的关系为:
下面关于信号
y
(
t
)
y\left( t \right)
y(t) 的频谱
Y
(
ω
)
Y\left( \omega \right)
Y(ω) 的正确叙述为:
A、
Y
(
ω
)
Y\left( \omega \right)
Y(ω) 是一个虚奇函数;
B、
Y
(
ω
)
Y\left( \omega \right)
Y(ω) 是一个实偶函数;
C、 当
ω
<
0
\omega < 0
ω<0 时,
Y
(
ω
)
=
0
Y\left( \omega \right) = 0
Y(ω)=0 ;
D、 当
ω
>
0
\omega > 0
ω>0 时,
Y
(
ω
)
=
0
Y\left( \omega \right) = 0
Y(ω)=0 。
答案:D。 本题根据 第七次作业第四大题 的证明题设计。 这是2022年的期末考试试题,只是将信号相加改成了信号相减。
9、 下面个图中 LTI 系统零极点分布, 系统的幅频特性为全通 系统为:
答案:D。 全通系统对应的零极点关于虚轴左右对称。 题目来自于 第13次作业中第一大题第2小题 。
10、 下面频谱对应的时域信号是?
答案:C。 这个题目在 期中随堂考试 出现过。 这个题目首先根据 1 / ( j ω + 1 ) 1/\left( {j\omega + 1} \right) 1/(jω+1) 对应 e − t ⋅ u ( t ) {e^{ - t}} \cdot u\left( t \right) e−t⋅u(t) 。 然后, 1 / ( − j ω + 1 ) 1/\left( { - j\omega + 1} \right) 1/(−jω+1) 是进行了频域反摺, 对应 e t ⋅ u ( − t ) {e^t} \cdot u\left( { - t} \right) et⋅u(−t) 。 然后在根据分子上 2 e − j ω 2{e^{ - j\omega }} 2e−jω , 对应将信号在往右平移1,乘以2, 对应最后的结果 C。
二、判断对错
- 题目要求: 判断对错提(10×1=10分, 正确画√, 错误画×。 将答案写在试卷前面的答案表格2中)
1、 周期信号与非周期信号的叠加一定是非周期信号。
答案:× 。 实际上这个问题与两个周期信号的叠加一定是周期信号本质是一样的。
2、 存在信号本身与它的频谱都是有限长的信号;
答案:×。 这个问题在课堂上讨论过。
3、 如果因果稳定最大相位的LTI系统函数具有靠近虚轴的零点,那么在零点对应虚轴所在的频率附近,系统的幅频特性有一个低谷,相位呈现上升趋势。
答案:×。 对于因果、稳定、最大相位系统, 它的零点都位于虚轴右边。 零点对应频率附近, 对应的相位应该是下降趋势, 而不是上升趋势。
4、 一个幅值为 1V 的周期方波信号, 通过一个理想低通滤波器之后,信号出现过冲, 此时信号的峰峰值为 1.09V。
答案:×。 这个题目在期中随堂考试考过。 峰峰值应该是两个过冲电压的叠加。 所以应该是 1.18V左右。
5、 一个线性时不变系统可以分解成一个最小相位系统和全通系统的级联。
答案:√。 这是第六章最后一节课中给出的结论。
6、 奇函数与奇函数的卷积为偶函数;
解答:√。 这个问题如果使用傅里叶变换分析比较容易。 对于两个奇函数的频谱都是虚奇函数。 卷积之后信号的频谱是两个虚奇函数的成绩, 为实偶函数。 这样对应的就是实偶信号。
7、 序列 x [ n ] x\left[ n \right] x[n] 的 z 变换为 X ( z ) X\left( z \right) X(z) 。那么 y [ n ] = x [ 2 n ] y\left[ n \right] = x\left[ {2n} \right] y[n]=x[2n] 对应的 z 变换为 0.5 X ( z / 2 ) 0.5X\left( {z/2} \right) 0.5X(z/2) 。
答案:×。 这个题目是考察 z变换中的尺度特性 与 Laplace 变换对应的尺度特性的不同。 具体解答可以参见 第11次作业中的z变换的尺度特性 。
8、 如果系统输入信号 与输出信号 之间的关系为: 。那么该系统是线性、时变系统、非因果系统。
答案:√。
9、 课程讲解的 4800波特率的数传机设计方案中, 应用了全占空、四电平、升余弦脉冲等编码以及单边带信号调制技术。
答案:√。 这是系统实际上是对听课情况进行调查。参加课件: 4.1.5
10、 两个无失真系统级联一定是无失真系统。
答案:√ 。 无失真系统的幅频特性为常量, 相频特性为线性相位。 两个系统 级联 , 也就是串联。 系统的幅频特性相乘, 相频特性相加。仍然保持无失真系统的频率特性。
三、填空题
- 题目要求: (2+2+3+3+3+2=15分。 将答案写在试卷题目中空线上)
1、 已知信号 f 1 ( t ) , f 2 ( t ) {f_1}\left( t \right),{f_2}\left( t \right) f1(t),f2(t) 的波形如下图所示。 如果 f ( t ) = f 1 ( t ) ∗ f 2 ( t ) f\left( t \right) = {f_1}\left( t \right) * {f_2}\left( t \right) f(t)=f1(t)∗f2(t) ,那么 f ( 1 ) = f\left( 1 \right) = f(1)= -0.5 , f ( 2 ) = f\left( 2 \right) = f(2)= -1.5; 。
□ 解答:
这是第 四次作业第一个大题第4小题 的内容。 详细解答可以参见 这次作业的参考答案。 下面给出最终的结果。
- 第一个空格: f ( 1 ) = − 0.5 f\left( 1 \right) = - 0.5 f(1)=−0.5 ;
- 第二个空格: f ( 2 ) = − 1.5 f\left( 2 \right) = - 1.5 f(2)=−1.5 。
2、 ∫ − ∞ + ∞ [ 2 e − t + cos 3 t ] ⋅ δ ′ ( t ) d t = \int_{ - \infty }^{ + \infty } {\left[ {2{e^{ - t}} + \cos 3t} \right] \cdot \delta '\left( t \right)dt} = ∫−∞+∞[2e−t+cos3t]⋅δ′(t)dt= 2 。
□ 解答:
注: 本题是 第一次作业第四大体的选做题第一小题 的变形。
3、 已知信号 f ( t ) f\left( t \right) f(t) 的波形如下图所示。 f e ( t ) {f_e}\left( t \right) fe(t) 是 f ( t ) f\left( t \right) f(t) 的偶分量。 那么 f e ( 0.5 ) = {f_e}\left( {0.5} \right) = fe(0.5)= 0.625 。
□ 解答:
信号的偶分量如下图所示, 所以在
f
e
(
0.5
)
=
(
0.875
+
0.375
)
=
0.625
{f_e}\left( {0.5} \right) = \left( {0.875 + 0.375} \right) = 0.625
fe(0.5)=(0.875+0.375)=0.625 。
这个题目也可以通过以下方式计算:
注:本小题是 第二次作业大二大题第一小题 的变形。
4、 已知两个序列 x [ n ] = { 1 , 2 , 2 , 1 , 3 } x\left[ n \right] = \left\{ {1,2,2,1,3} \right\} x[n]={1,2,2,1,3} , h [ n ] = { 3 , 1 , 2 , 4 } h\left[ n \right] = \left\{ {3,1,2,4} \right\} h[n]={3,1,2,4} 。 y [ n ] y\left[ n \right] y[n] 是 x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] x[n],h[n] 做长度为 6 的圆卷积, 即 y [ n ] = x [ n ] ⊗ 6 h [ n ] y\left[ n \right] = x\left[ n \right]{ \otimes _6}h\left[ n \right] y[n]=x[n]⊗6h[n] 。 那么 y [ 1 ] = y\left[ 1 \right] = y[1]= 19 。
□ 解答:
本题是 第十四次作业的第一小题 的变形。
from headm import *
x = [1,2,2,1,3,0]
h = [3,1,2,4,0,0]
xh = fft.ifft(fft.fft(x)*fft.fft(h))
printf(real(xh))
5、 已知序列 x [ n ] x\left[ n \right] x[n] 的长度为 512。 使用 FFT 计算序列的频谱, 所需要的实数乘法次数为 。
□ 解答:
所需要的实数乘法次数为:
6、 已知离散时间系统的零极点分别是如下图所示。 系统的单位冲激响应的初值 h [ 0 ] = 5 h\left[ 0 \right] = 5 h[0]=5 。 那么该系统的系统函数 H ( z ) = H\left( z \right) = H(z)= 。
。
□ 解答:
根据系统的零极点分布, 可以知道系统函数 H ( z ) H\left( z \right) H(z) 的表达式为:
其中
k
k
k 为待定系数。 再根据
h
[
0
]
h\left[ 0 \right]
h[0] , 应用初值定理:
所以系统函数:
这个小题来自于 第12次作业中的第二大体的第2小题 进行变形。
7、 信号 ( 1 + 5 t ) e − 2 t \left( {1 + 5t} \right){e^{ - 2t}} (1+5t)e−2t 的 Laplace 变换 F ( s ) = F\left( s \right) = F(s)= 。
□ 解答:
8、 已知信号 f ( t ) f\left( t \right) f(t) 的 Laplace变换为:
那么 f ( 0 + ) = f\left( {{0_ + }} \right) = f(0+)= 1 , f ( ∞ ) = f\left( \infty \right) = f(∞)= 0 。
□ 解答:
9、 已知信号 f ( t ) f\left( t \right) f(t) 的 Nyquist 频率为 ω 0 {\omega _0} ω0 。那么 f 2 ( t ) {f^2}\left( t \right) f2(t) 的 Nyquist 频率为 ; f ( t ) ⋅ cos ( ω 0 t ) f\left( t \right) \cdot \cos \left( {{\omega _0}t} \right) f(t)⋅cos(ω0t) 的 Nyquist 频率为 。
□ 解答:
- f 2 ( t ) {f^2}\left( t \right) f2(t) 的 Nyquist 频率为 2 ω 0 2{\omega _0} 2ω0 ;
- f ( t ) ⋅ cos ( ω 0 t ) f\left( t \right) \cdot \cos \left( {{\omega _0}t} \right) f(t)⋅cos(ω0t) 的 Nyquist 频率为 3 ω 0 3{\omega _0} 3ω0 。
10、 信号 x ( t ) x\left( t \right) x(t) 经过周期为 T s {T_s} Ts 的均匀采样, 采样频率满足采样定理。 对采样信号进行 零阶保持 恢复出信号 x 0 ( t ) {x_0}\left( t \right) x0(t) 。 如果信号 x ( t ) x\left( t \right) x(t) 的相位谱 A ( ω ) = 0 A\left( \omega \right) = 0 A(ω)=0 。 那么 x 0 ( t ) {x_0}\left( t \right) x0(t) 的相位谱是 。
□ 解答:
对采样信号进行 零阶保持恢复, 实际上就是将采样信号与
u
(
t
)
−
u
(
t
−
T
s
)
u\left( t \right) - u\left( {t - {T_s}} \right)
u(t)−u(t−Ts) 进行卷积。
采样信号的频谱:
零阶保持器单位冲激响应为:
所以, 零阶保持 恢复信号的频谱:
四、简答题
- 题目要求: 简答题(5+5+5=15分。 将答案写在答题纸上, 答案全面标注题目标号)
1、 使用FFT进行信号频谱分析。 如果希望能够获得信号频谱中最高频率不低于 f M A X = 10 k H z {f_{MAX}} = 10kHz fMAX=10kHz , 频谱的分辨率不低于 100Hz。 请给出对信号进行采样的最低频率和最低采样数据个数, 并简述频谱结果中可能存在的误差来源以及消除的方法。
□ 解答:
简答题应该包含以下三部分部分。
- 信号采样参数:
信号的采样频率不小于 频谱最高频率的两倍。 去
f
s
=
2
×
f
M
A
X
=
20
k
H
z
{f_s} = 2 \times {f_{MAX}} = 20kHz
fs=2×fMAX=20kHz ;
信号采样时间不小于频率分辨率的倒数,
T
1
=
1
/
f
1
=
0.01
s
{T_1} = 1/{f_1} = 0.01s
T1=1/f1=0.01s ;
那么采样数据个数不小于 N = f s × T 1 = 20 k × 0.01 = 200 N = {f_s} \times {T_1} = 20k \times 0.01 = 200 N=fs×T1=20k×0.01=200 。如果使用 FFT 进行频谱分析, 去采样数据个数 N = 256 N = 256 N=256。
-
频谱误差来源:
- 由于信号采样可能带来的频谱混叠 误差;
- 由于信号截断可能带来的频谱泄露误差;
- 由于计算过程中, 省去了采样周期 T s {T_s} Ts , 可能到来计算搜得到的数值比实际数值大了 1 / T s 1/{T_s} 1/Ts 倍。
-
消除误差方法:
- 消除频谱混叠的方法包括: (1)增加信号采样频率; (2)在采样前对信号进行抗混叠滤波;
- 消除频谱泄露的方法包括: (1)增加采样信号的时间;(2)使用数据加窗 来截断数据;
- 消除结果数值倍率误差, 在计算结果基础上,乘以采样周期 T s {T_s} Ts 。
在上面回答中, 只要包含有频谱混叠和频谱泄露即可算作回答完整。
2、 请简述序列的 ZT, DTFS, DFT 之间的关系。
□ 解答:
-
序列的 z 变换公式如下:
-
序列的 DTFS 是对应的 z变换结果在单位圆上的取值: X ( e j ω ) X\left( {{e^{j\omega }}} \right) X(ejω) 。
-
序列的 DFT 则是 z 变换在单位圆上的等间隔采样 N 可数据。 N 是数据的长度。
3、 使用 FFT 加速计算两个序列 x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] x[n],h[n] 的卷积。 如果两个序列长度相差很大, 比如 x [ n ] x\left[ n \right] x[n] 的长度为 M, h [ n ] h\left[ n \right] h[n] 的长度为 N , M > > N M > > N M>>N 。 请简述使用FFT加速计算序列卷积的框架。
□ 解答:
采用 分段重叠相加方法实现快速卷积, 回答包含如下要点:
(1) 对于长序列 x [ n ] x\left[ n \right] x[n] 进行分段。 分段的长度 m m m 满足:一方面 m 与 N大体相同, 另一方面 要求 m + N − 1 m + N - 1 m+N−1 等于 2 的整数次幂;
(2) 将 h [ n ] h\left[ n \right] h[n] 通过补零, 使其长度为 m + N − 1 m + N - 1 m+N−1 。 并计算出对应的 FFT结果 H [ k ] H\left[ k \right] H[k] 。 这个结果只需要计算一次。
(3) 对于 x [ n ] x\left[ n \right] x[n] 每一个分段, 都通过补零, 使其长度为 m + N − 1 m + N - 1 m+N−1 。 计算出对应的 FFT 结果, 并于 H [ k ] H\left[ k \right] H[k] 相乘, 进行 IFFT, 得到长度为 m + N − 1 m + N - 1 m+N−1 的卷积结果。
(4) 对于每一段的卷积结果, 使其后面 N − 1 N - 1 N−1 个数据与后一段结果前面的 N − 1 N - 1 N−1 个数据 重叠对位相加, 并把相加之后的结果重新连接成最终的卷积结果。
五、计算题
- 题目要求: 计算题(5×5=25分。 将答案写在答题纸上, 答案前面标注题目标号)
第一小题
已知 LTI 系统在输入信号 x ( t ) = e − 2 t ⋅ u ( t ) x\left( t \right) = {e^{ - 2t}} \cdot u\left( t \right) x(t)=e−2t⋅u(t) 作用下的零状态响应为:
求系统的单位冲激响应为 h ( t ) h\left( t \right) h(t) 。
□ 解答:
输入信号 x ( t ) x\left( t \right) x(t) 和输出信号 y ( t ) y\left( t \right) y(t) 的 Laplace变换分别为:
系统函数为:
进行因式分解:
所以
from headm import *
from sympy import symbols,simplify,expand,print_latex
from sympy import *
z = symbols('z')
s = symbols('s')
t = symbols('t')
xt = exp(-2*t)
yt = 1/2*exp(-t)+2*exp(-2*t) + exp(-3*t)
Xs = laplace_transform(xt, t, s)
Ys = laplace_transform(yt, t, s)
result = inverse_laplace_transform(Ys[0]/Xs[0],s,t)
mstr = latex(result)
printf(mstr)
_=tspexecutepythoncmd("msg2latex")
第二小题
已知信号 f ( t ) f\left( t \right) f(t) 的频谱 F ( ω ) F\left( \omega \right) F(ω) 为:
求 f ( t ) f\left( t \right) f(t) 的表达式。
□ 解答:
F
(
ω
)
F\left( \omega \right)
F(ω) 来自于
e
j
ω
/
(
j
ω
+
3
)
{e^{j\omega }}/\left( {j\omega + 3} \right)
ejω/(jω+3) 的虚部。 假设
e
j
ω
/
(
j
ω
+
3
)
{e^{j\omega }}/\left( {j\omega + 3} \right)
ejω/(jω+3) 对应的时域信号为
f
1
(
t
)
{f_1}\left( t \right)
f1(t) 。 那么:
那么 f ( t ) f\left( t \right) f(t) 是 f 1 ( t ) {f_1}\left( t \right) f1(t) 的 奇分量, 即 f ( t ) = [ f 1 ( t ) − f 1 ( − t ) ] / 2 f\left( t \right) = \left[ {{f_1}\left( t \right) - {f_1}\left( { - t} \right)} \right]/2 f(t)=[f1(t)−f1(−t)]/2 , 所以:
第三小题
计算 信号 x ( t ) = t ⋅ ( 2 + e − 3 t ) ⋅ u ( t ) x\left( t \right) = t \cdot \left( {2 + {e^{ - 3t}}} \right) \cdot u\left( t \right) x(t)=t⋅(2+e−3t)⋅u(t) 的Laplace 变换。
□ 解答:
根据 Laplace 变换域微分性质:
经过化简
第四小题
已知因果离散时间系统对应的差分方程以及初始条件。 请利用 z 变换求解差分方程的完全解、零输入响应和零状态响应。
□ 解答:
【1】 求完全解
对差分方程两边同时进行单边 z变换:
求解 Y ( z ) Y\left( z \right) Y(z) :
进行 z 反变换。 利用因式分解方法:
所以, 方程的完全解为:
【2】 求零输入响应
零输入响应,对应的 z 变换方程为:
求解得到
零输入信号对应的解:
【3】 求解零状态响应
零状态响应对应的 z 变换方程:
所以, 零状态响应
第五小题
已知 LTI 系统框图如下图所示。 请写出该系统稳定时对应的负反馈系数 K 的取值范围:
试题原型:本试题来自于 第十二次作业中的第四大题第1小题 。 修改了前向子系统的传递函数。
□ 解答:
根据系统框图, 可以写出系统函数:
系统的两个极点分别为:
只有当 K > 6 K > 6 K>6 的时候, 系统的两个极点都位于 s 平面的左半平面, 系统稳定。
六、综合题1-系统分析
已知 LTI系统框图如下图所示:
(1) 写出该系统的系统函数 H ( s ) = Y ( s ) / X ( s ) H\left( s \right) = Y\left( s \right)/X\left( s \right) H(s)=Y(s)/X(s) ;
(2) 求出该系统的单位冲激响应 h ( t ) h\left( t \right) h(t) ;
(3) 绘制出该系统的零极点分布, 判断系统的稳定性和幅频特性;
试题原型:本试题来源于 第十二次作业第二大题第1小题 , 修改了与人来试题中存在着错误。 并要求绘制系统的零极点分布以及判断系统的频率特性。
□ 解答:
(1) 设输入输出信号的 Laplace 变换分别为
X
(
s
)
,
Y
(
s
)
X\left( s \right),Y\left( s \right)
X(s),Y(s) 。 根据系统框图, 写出各个节点对应的表达式。
根据最后一个综合器的输出和输入之间的关系, 写出方程。
化简上面公式, 可以得到系统方程:
(2) 将 H ( s ) H\left( s \right) H(s) 进行因式分解:
其中
前面一个分式
(
2
s
+
1
)
/
3
(
s
2
+
s
+
1
)
\left( {2s + 1} \right)/3\left( {{s^2} + s + 1} \right)
(2s+1)/3(s2+s+1) 具有两个极点:
对它进行因式分解
应用留数方法, 可以分别求出:
因此, 上面表达式对应:
所以, 系统的单位冲激响应
(3) 根据 H ( s ) H\left( s \right) H(s) 表达式, 它具有一个 零点 s = 0 s = 0 s=0 , 以及三个极点:
下图是系统的零极点分布。
- 系统所有的极点都位于 s 平面的左半平面, 所以系统是 稳定系统。
- 靠近虚轴的主要 零极点是
它们决定了系统的幅频特性为 带通 特性。
第七题:信号卷积
已知两个信号的表达式分别为:
利用图解卷积方法求卷积 f ( t ) = f 1 ( t ) ∗ f 2 ( t ) f\left( t \right) = {f_1}\left( t \right) * {f_2}\left( t \right) f(t)=f1(t)∗f2(t) , 并大致绘制出卷积信号的波形。
试题来源: 第四次作业第一大题第2小题 。将原来的方波信号进行了扩展。
□ 解答:
利用图解方法辅助进行求解。 选择 f 2 ( t ) {f_2}\left( t \right) f2(t) 进行反转,
根据两个信号重叠关系, 将卷积过程分为以下三个阶段。
【1】 阶段1: t < − 1 t < - 1 t<−1 。
此时 f 1 ( τ ) , f 2 ( t − τ ) {f_1}\left( \tau \right),{f_2}\left( {t - \tau } \right) f1(τ),f2(t−τ) 并没有重叠, 所以在这个阶段。
【2】阶段2: − 1 ≤ t < 1 - 1 \le t < 1 −1≤t<1 。在这个阶段, f 1 ( τ ) , f 2 ( t − τ ) {f_1}\left( \tau \right),{f_2}\left( {t - \tau } \right) f1(τ),f2(t−τ) 部分重叠。
【3】 t > 1 t > 1 t>1 。 下图显示了 f 1 ( τ ) , f 2 ( t − τ ) {f_1}\left( \tau \right),{f_2}\left( {t - \tau } \right) f1(τ),f2(t−τ) 重叠模式。
综合三个阶段的结果, 得到卷积结果的公式:
from headm import *
t = linspace(-2.00, 5.00, 2500)
def fwin(begin, stop, tt=[]):
global t
if len(tt) == 0: tt = t
return heaviside(tt-begin,0.5)-heaviside(tt-stop,0.5)
ft = (1-exp(-2*(t+1)))/2*fwin(-1,1) +\
(exp(2)-exp(-2))/2*exp(-2*t)*fwin(1, 5)
plt.plot(t, ft, lw=3)
plt.xlabel("t")
plt.ylabel("f(t)")
plt.axis([min(t)-(max(t)-min(t))/20, max(t)+(max(t)-min(t))/20, -0.20, 1.00])
plt.grid(False)
plt.tight_layout()
plt.show()
第八题:离散时间系统分析
已知一个离散系统的系统框图如下图所示。 其中系数 a 0 , a 1 , a 2 {a_0},{a_1},{a_2} a0,a1,a2 均为非 0 的实常数, 系统的频率响应特性为:
- 在 Ω = 0 \Omega = 0 Ω=0 时 为1;
- 在 Ω = 2 π / 3 \Omega = 2\pi /3 Ω=2π/3 时 为 0;
求满足上述条件的系数 a 0 , a 1 , a 2 {a_0},{a_1},{a_2} a0,a1,a2 。
□ 解答:
根据系统框图, 可以得到系统函数:
根据系统给定的频谱响应,可以得到以下两个方程:
根据第二个方程,可以知道:
由于 a 0 , a 1 , a 2 {a_0},{a_1},{a_2} a0,a1,a2 都是非0实数, 所以 a 1 = a 2 {a_1} = {a_2} a1=a2 。这样, 再加上前面第一个方程,便有如下三元一次方程组:
经过求解,可得: a 0 = − 1 , a 1 = 1 , a 2 = 1 {a_0} = - 1,{a_1} = 1,{a_2} = 1 a0=−1,a1=1,a2=1 。
from headm import *
from sympy import symbols,simplify,expand,print_latex
from sympy import *
A = Matrix([[1,1,1],[-1,-1/2,-1/2],[0,1,-1]])
B = Matrix([1,0,0])
x = A.solve(B)
result = x
mstr = latex(result)
printf(mstr)
_=tspexecutepythoncmd("msg2latex")
说明: 本题的来源 《信号与系统》 北京邮电大学信号与系统课程组。P270,6-26. 【考验真题-离散系统的频率响应特性】
※ 考试总结 ※
■ 相关文献链接:
- 信号与系统 2023年春季学期期末考试命题
- 404
- 信号与系统期末考试2020春季学期试题准备
- 第12次作业中第四小题
- 第14次作业第二大体中的第一小题
- 第14次作业的第一小题。
- 第七次作业第四大题
- 第13次作业中第一大题第2小题
- 2024年春季学期信号与系统课堂测验总结分析
- 第11次作业中的z变换的尺度特性
- 四次作业第一个大题第4小题
- 第一次作业第四大体的选做题第一小题
- 第二次作业大二大题第一小题
- 第十四次作业的第一小题
- 第12次作业中的第二大体的第2小题
● 相关图表链接: