简 介: 本文探讨了信号通过一阶低通滤波器进行多次滤波后的变化,并通过LTspice仿真观察到,随着滤波次数的增加,输出信号逐渐接近高斯信号。文章分析了滤波过程中的信号延迟和方差变化,并基于电路的单位冲激响应,结合中心极限定理,推导出多次卷积后的信号趋向于高斯函数的结论。通过变量替换和仿真验证,进一步证明了这一理论。最终指出,只要滤波器的单位冲激响应信号为正,无论何种滤波器,多次卷积结果都会趋向于高斯信号。
关键词
: 低通滤波器,卷积,中心极限定理
卷到最后都是“高斯”
01 循环卷积
一、电路仿真
前几天讨论了一个矩形波信号, 通过 RC低通滤波电路 进行反复滤波之后的波形。 使用LTspice进行仿真, 可以看到, 随着滤波次数的增加, 输出信号越来越接近高斯信号。 这难道是一个巧合吗? 随着滤波次数的增加, 不仅信号波形逐步接近于高斯信号, 同时信号的幅度也逐步降低, 信号的方差 也渐渐扩大。 此外, 还有一个明显的变化, 就是信号随着滤波次数的增加逐步延迟。 下面, 对于这个问题稍微进行理论上的分析。
二、问题分析
由于信号是通过一阶低通滤波器进行滤波, 所以信号中的高频成分信号的作用在后续滤波过程中逐步减小, 因此, 影响最后输出信号的因素, 主要是由信号给电路中电容最初冲入的电压有关系。 而这个电压的大小可以看成由一个输入的冲击信号来完成的。 所以, 最终滤波电路输出信号是由电路的单位冲激响应信号, 经过不断地卷积而形成的。 这是后面分析的理论基础。
对于 RC 一阶低通滤波器来说, 使用它对于信号进行滤波, 如果进行重复滤波, 需要使用电压跟随电路将RC滤波电路进行级联。 级联 N 个滤波器。 电路对应的单位冲激响应是单个滤波器的单位冲激响应的卷积。 系统函数则是单个滤波器的系统函数的幂函数。 我们希望, 证明, 当级联个数 n 趋向于无穷大的时候, 对应的系统单位冲激响应趋向于一个高斯信号。 对应的系统函数, 也是一个高斯信号。
三、卷积极限
为了证明上面的结论, 考察一下该电路的单位冲激响应, 这是一个指数衰减的信号。 该信号是一个始终大于0 的函数, 它的面积 恰好等于1 。 这样, 我们就可以将它当做一个随机变量 x 的概率密度函数。 可以求出该随机变量的均值和方差。 构建一个有 N 个独立同分布的随机变量 x 累加和的变量 Yn, 根据概率论中的中心极限定理 , 可以知道这个变量的概率分布函数, 随着 n 趋向于 ∞, 它趋向于高斯函数。
下面, 分析一下公式中随机变量之和对应的概率密度函数, 它等于单个随机变量的概率密度函数 之间进行卷积的结果。 为了下面方便书写, 将连续卷积记为下面等效的连乘的形式。 那么, 在累加和的基础上, 减去 n 倍的均值, 这样就构成了零均值的随机变量, 对应的概率密度函数可以看成 h(x) 平移之后的卷积。 如果该变量除以一个比例因子, 则对应变量的方差变化了比例因子的平方倍。 也就是说, 它对应的概率密度函数对应的方差等于 Yn 的方差, 再乘以 n, sigma的平方。 由此, 可以知道对应的极限也是在Yn的概率密度函数的基础上, 修改一下对应的方差。 至此, 我们得到了 h(t) 卷积极限的公式。 经过变量替换, 最终, 得到了我们希望证明的结论, 那就是 一阶低通滤波器单位冲激响应进行卷积的极限的确是一个高斯函数。
四、仿真验证
根据推导出来的极限公式, 可以看到, 随着迭代的次数增加, 输出信号的幅度随着 n 的根号分之一衰减, 信号的中心随着 n 呈现等间隔的延迟, 信号的方差随着 n 的二分之一次方增加。 根据前几天电路仿真的结果, 可以看出, 对输出信号进行高斯信号拟合对应的幅度是减小的。 中心延迟随着 n 、线性增加, 对应的方差增加, 总的情况大体符合 n 的二分之一次方。 由此也能够对这个极限公式进行验证。
※ 卷积到高斯 ※
本文讨论了信号经过由一阶低通滤波器, 进行循环滤波之后的信号, 可以看到这个输出信号与该低通滤波器的单位冲激响应信号有关系。 可以看到它们的卷积结果。 这个结果随着滤波次数的增加, 逐步接近于 一个高斯信号。 其中应用了概率论中的中心极限定理, 因此, 只要滤波器的单位冲激响应信号都是大于零的信号。 都可以得到相同的结论。 也就是无论什么样的滤波器, 只要单位冲激响应信号的幅度大于零, 最终卷积结果都是趋向于一个高斯信号。
■ 相关文献链接: