为什么卷到最后都是“高斯”?

简 介: 本文探讨了信号通过一阶低通滤波器进行多次滤波后的变化,并通过LTspice仿真观察到,随着滤波次数的增加,输出信号逐渐接近高斯信号。文章分析了滤波过程中的信号延迟和方差变化,并基于电路的单位冲激响应,结合中心极限定理,推导出多次卷积后的信号趋向于高斯函数的结论。通过变量替换和仿真验证,进一步证明了这一理论。最终指出,只要滤波器的单位冲激响应信号为正,无论何种滤波器,多次卷积结果都会趋向于高斯信号。

关键词 低通滤波器卷积中心极限定理

卷到最后都是“高斯”

 

01 环卷积


一、电路仿真

  前几天讨论了一个矩形波信号, 通过 RC低通滤波电路 进行反复滤波之后的波形。  使用LTspice进行仿真,  可以看到, 随着滤波次数的增加, 输出信号越来越接近高斯信号。 这难道是一个巧合吗?  随着滤波次数的增加, 不仅信号波形逐步接近于高斯信号, 同时信号的幅度也逐步降低, 信号的方差 也渐渐扩大。 此外, 还有一个明显的变化, 就是信号随着滤波次数的增加逐步延迟。  下面, 对于这个问题稍微进行理论上的分析。

G6M1747449496_1920_1080.MP4|_-6

二、问题分析

  由于信号是通过一阶低通滤波器进行滤波,  所以信号中的高频成分信号的作用在后续滤波过程中逐步减小, 因此, 影响最后输出信号的因素,  主要是由信号给电路中电容最初冲入的电压有关系。  而这个电压的大小可以看成由一个输入的冲击信号来完成的。  所以, 最终滤波电路输出信号是由电路的单位冲激响应信号,  经过不断地卷积而形成的。 这是后面分析的理论基础。

G7M1747449865_1920_1080.MP4|_-7

  对于 RC 一阶低通滤波器来说,  使用它对于信号进行滤波,   如果进行重复滤波,    需要使用电压跟随电路将RC滤波电路进行级联。  级联 N 个滤波器。    电路对应的单位冲激响应是单个滤波器的单位冲激响应的卷积。  系统函数则是单个滤波器的系统函数的幂函数。  我们希望,   证明, 当级联个数 n 趋向于无穷大的时候, 对应的系统单位冲激响应趋向于一个高斯信号。   对应的系统函数, 也是一个高斯信号。

G16M1747444817_1920_1080.MP4|_-16

三、卷积极限

  为了证明上面的结论,   考察一下该电路的单位冲激响应,    这是一个指数衰减的信号。   该信号是一个始终大于0 的函数,  它的面积 恰好等于1 。 这样, 我们就可以将它当做一个随机变量 x 的概率密度函数。  可以求出该随机变量的均值和方差。  构建一个有 N 个独立同分布的随机变量 x 累加和的变量 Yn,  根据概率论中的中心极限定理 , 可以知道这个变量的概率分布函数, 随着 n 趋向于 ∞, 它趋向于高斯函数。

G14M1747446842_1920_1080.MP4|_-14
  下面, 分析一下公式中随机变量之和对应的概率密度函数,  它等于单个随机变量的概率密度函数 之间进行卷积的结果。 为了下面方便书写,  将连续卷积记为下面等效的连乘的形式。  那么, 在累加和的基础上, 减去 n 倍的均值, 这样就构成了零均值的随机变量,  对应的概率密度函数可以看成 h(x) 平移之后的卷积。  如果该变量除以一个比例因子,  则对应变量的方差变化了比例因子的平方倍。  也就是说, 它对应的概率密度函数对应的方差等于 Yn 的方差, 再乘以 n, sigma的平方。  由此, 可以知道对应的极限也是在Yn的概率密度函数的基础上, 修改一下对应的方差。  至此,  我们得到了 h(t) 卷积极限的公式。  经过变量替换, 最终, 得到了我们希望证明的结论,  那就是 一阶低通滤波器单位冲激响应进行卷积的极限的确是一个高斯函数。

G15M1747448655_1920_1080.MP4|_-15

四、仿真验证

  根据推导出来的极限公式, 可以看到,  随着迭代的次数增加, 输出信号的幅度随着 n 的根号分之一衰减,  信号的中心随着 n 呈现等间隔的延迟,  信号的方差随着 n 的二分之一次方增加。 根据前几天电路仿真的结果,  可以看出, 对输出信号进行高斯信号拟合对应的幅度是减小的。  中心延迟随着 n 、线性增加,  对应的方差增加, 总的情况大体符合 n 的二分之一次方。  由此也能够对这个极限公式进行验证。


G8M1747449164_1920_1080.MP4|_-8

 

积到高斯 ※


  文讨论了信号经过由一阶低通滤波器,  进行循环滤波之后的信号, 可以看到这个输出信号与该低通滤波器的单位冲激响应信号有关系。  可以看到它们的卷积结果。  这个结果随着滤波次数的增加, 逐步接近于 一个高斯信号。  其中应用了概率论中的中心极限定理,  因此, 只要滤波器的单位冲激响应信号都是大于零的信号。 都可以得到相同的结论。 也就是无论什么样的滤波器, 只要单位冲激响应信号的幅度大于零, 最终卷积结果都是趋向于一个高斯信号。

G6M1747450166_1920_1080.MP4|_-6


■ 相关文献链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值