一、序列的傅里叶变换
□ 解答:
(1)
(2)
序列的 z 变换为:
那么对应序列的傅里叶变换为:
(3)
二、系统框图与系统函数
1、连续时间系统
- 第一小题:(必做题)
□ 解答:
(1)
在原来作业给定的系统框图中, 最下面的反馈系数是 1 / 2 s 1/2s 1/2s 。 这对系统化简到来了麻烦。 下面将它修改为 1 / s 1/s 1/s 。 这样后面系统求解就比较简单了。 下面的求解过程, 是按照修改后的系数进行求解的。
设置输入输出信号的 Laplace 变换分别为 X ( s ) , Y ( s ) X\left( s \right),Y\left( s \right) X(s),Y(s) 。 根据系统框图, 可以写出各个节点对应的表达式。 根据最后一个综合器的输出和输入之间的关系, 可以写出对应的方程为:
化简上面公式, 可以获得系统方程为:
from headm import *
from sympy import symbols,simplify,expand,print_latex
from sympy import *
X,Y,s,t = symbols('X,Y,s,t')
ys = s/(s**3+3*s**2+3*s+2)
result = inverse_laplace_transform(ys,s,t)
mstr = latex(result)
printf(mstr)
_=tspexecutepythoncmd("msg2latex")
(2) 将 H ( s ) H\left( s \right) H(s) 进行因式分解:
根据常见信号的 Laplace 变换表格, 可以给出上面两个二次分式和一次分式分别对应的信号,系统的单位冲击响应为:
(3) 因为 h ( t ) h\left( t \right) h(t) 是指数衰减, 满足绝对可积, 系统是稳定的。
- 第二小题:(选做题)
□ 解答:
(1) 先不考虑最后一个延迟环节。 首先根据综合器写出输入输出之间的方程。
化简这个方程,可以得到:
再增加上最后的延迟环节, 可以得到:
(2)
输入信号的 Laplace 变换为:
系统的零状态输出为:
对
Y
(
s
)
Y\left( s \right)
Y(s) 进行因式分解:
对应的时域信号为:
(3) 该系统是稳定系统 。
2、离散时间系统
- 第一小题:(必做题)
□ 解答:
(1) 在系统框图中间增加一个中间变量:
根据前后两个加法器, 得到两个方程:
消去 W ( z ) W\left( z \right) W(z) , 得到系统函数:
(2)
输入信号的 z 变换:
系统的零状态输出为:
进行化简:
进行因式分解:
对应的时域序列为:
(3) 该系统为不稳定系统。 这是因为, 该系统的系统函数中包含有单位圆之外的极点, 以及一个在 (-1)处的极点。
- 第二小题: (必做题)
□ 解答:
(1) 根据系统的零极点的分布, 可以写出系统函数:
其中 k k k 是待定系数。 根据系统的初值 h [ 0 ] = 3 h\left[ 0 \right] = 3 h[0]=3 , 由 z 变换的初值定理:
因此, 系统函数为:
系统的单位样值响应 h [ n ] h\left[ n \right] h[n] 是系统函数 H ( z ) H\left( z \right) H(z) 的 z 反变换结果。 将 H ( z ) H\left( z \right) H(z) 进行因式分解:
那么, 对应的右边序列为:
(2) 系统的单位阶跃响应为:
利用因式分解方法, 求
g
[
n
]
g\left[ n \right]
g[n] 。
(3) 根据系统函数, 绘制出一个对应的系统框图:
- 第三小题:(选做题)
□ 解答:
在系统框图中添加中间临时变量 W ( z ) W\left( z \right) W(z) 。 写出系统中各分支对应的变量。
▲ 图1.1.4 设置了中间变量的系统框图
根据系统框图中累加器关系,可以得到如下方程:
消去 W ( z ) W\left( z \right) W(z) 临时变量,得到系统函数:
根据系统给出的 H 0 ( z ) , H 1 ( z ) , H 2 ( z ) H_0 \left( z \right),H_1 \left( z \right),H_2 \left( z \right) H0(z),H1(z),H2(z) 表达式,代入上面 H ( z ) H\left( z \right) H(z) , 可得:
进行因式分解,可得:
写出相同响应对应的右边序列:
(2) H(z) 的极点都在单位圆内, 系统是稳定的。
三、利用系统函数分析输入输出
- 第一小题:(必做题)
□ 解答:
根据系统函数的定义 H ( s ) = Y ( s ) / X ( s ) H\left( s \right) = Y\left( s \right)/X\left( s \right) H(s)=Y(s)/X(s) , 由题目中给定的输入输出信号的变化, 可以求出系统函数:
系统的单位冲激响应
h
(
t
)
h\left( t \right)
h(t) 是系统函数
H
(
s
)
H\left( s \right)
H(s) 的Laplace变换。 将
H
(
s
)
H\left( s \right)
H(s) 进行因式分解, 这样便于写出
h
(
t
)
h\left( t \right)
h(t) 的表达式。
- 第二小题:(必做题)
□ 解答:
根据系统函数的定义, H ( s ) = Y ( s ) / X ( s ) H\left( s \right) = Y\left( s \right)/X\left( s \right) H(s)=Y(s)/X(s) , 所以系统的输入为: X ( s ) = Y ( s ) / H ( s ) X\left( s \right) = Y\left( s \right)/H\left( s \right) X(s)=Y(s)/H(s) 。 根据已知的 h ( t ) , y ( t ) h\left( t \right),y\left( t \right) h(t),y(t) , 求出它们对应的 Laplace变换:
那么,
因此, 可以知道输入信号 x ( t ) x\left( t \right) x(t) 为:
- 第三小题:(必做题)
□ 解答:
根据系统的差分方程, 可以写出系统的系统函数:
根据系统的零状态输出, 写出对应的 z 变换:
所以系统的激励信号 x [ n ] x\left[ n \right] x[n] 的 z 变换为:
对应的时域序列信号为:
- 第四小题:(选做题)
□ 解答:
(1) 这个题目原来是在第二章, 现在在 Laplace 变换域内讨论这个题目的求解过程。 将两次系统的输入和输出都进行 Laplace 变换。
系统的完全输出等于零状态响应加上零输入响应:
上面两个表达式相减,可得:
所以
进行 Laplace 反变换可得:
(2) 根据已经求得的 H ( s ) H\left( s \right) H(s) , 可以求得 Y z i ( s ) Y_{zi} \left( s \right) Yzi(s) :
进行 Laplace 反变换,可得:
(3)
将 x 3 ( t ) x_3 \left( t \right) x3(t) 进行 Laplace 变换:
▲ 图1.2.2 x3(t)信号
那么系统的完全响应为:
对应的时域信号为:
▲ 图1.2.3 系统的完全响应 y3(t)
四、系统的稳定性与因果性
- 第一小题:(必做题)
□ 解答:
(1) 根据系统框图, 可以写出系统函数:
(2) 系统的两个极点分别为:
当 K > 8 K > 8 K>8 的时候, 对应的极点都位于 s 平面的左半平面, 系统稳定。
根据 Routh 定理, 对于 2 阶多项式, 当所有的系数正负符号都相同(本题都是大于0), 对应的根都位于左半平面。 由此, 也可以得出相同的结论。
(3) 当 16 − 4 ( K − 8 ) = 0 16 - 4\left( {K - 8} \right) = 0 16−4(K−8)=0 ,即 K = 12 K = 12 K=12 。 系统函数具有二重极点。 基点为: p 1 , 2 = − 2 {p_{1,2}} = - 2 p1,2=−2 。 此时, 系统函数为:
对应的系统函数为:
- 第二小题:(选做题)
□ 解答:
(1) 根据系统框图,可以得到如下方程:
简化之后, 可以得到系统的系统函数为:
(2) 整理系统函数如下:
系统函数的两个极点分别为:
下面绘制出l个极点对应不同 K值变化情况。
▲ 图1.3.1 不同的K对应两个极点的取值
from headm import *
K = linspace(-1, 3, 10000)
p1 = (1-K+sqrt((K-1)**2+1))/2
p2 = (1-K-sqrt((K-1)**2+1))/2
plt.plot(K, p1, lw=3, label='p1')
plt.plot(K, p2, lw=3, label='p2')
plt.xlabel("K")
plt.ylabel("p1,p2")
plt.grid(True)
plt.tight_layout()
plt.legend(loc='upper right')
plt.show()
分别求出一下两个方程对应的根, 可以知道 K 取值在 ( 1 / 4 , 7 / 4 ) \left( {1/4,\,\,7/4} \right) (1/4,7/4) 之内时, 两个极点都位于单位圆内。
因此, 当 1 / 4 < K < 7 / 4 1/4 < K < 7/4 1/4<K<7/4 时, 系统是稳定的。
- 第三小题:(必做题)
□ 解答:
(1) 根据差分方程, 得到系统的系统函数为:
根据题意, 该差分方程对应的是一个因果 LTI 系统。 系统函数中的极点 9 / 10 9/10 9/10 位于单位圆之内, 所以该系统为 “稳定系统”。
(2) 根据差分方程得到系统函数:
根据题意, 该差分方程对应的是一个因果 LTI 系统。 它的系统函数具有一个二阶极点: p 1 , 2 = − 1 {p_{1,2}} = - 1 p1,2=−1 。 位于单位圆上, 所以该系统是一个 “不稳定系统”。
- 第四小题:(必做题)
□ 解答:
(1) 因果系统
(2) 非因果系统
(3) 非因果系统
五、电路系统分析
□ 解答:
(1) 为了 v 2 ( t ) v_2 \left( t \right) v2(t) , 分别考虑在 v 1 ( t ) v_1 \left( t \right) v1(t) 和 v 3 ( t ) v_3 \left( t \right) v3(t) 作用下, 在 C 1 C_1 C1 上所形成的电压。
▲ 图1.5.1 s域内的电路图
考虑 v 3 ( t ) = 0 v_3 \left( t \right) = 0 v3(t)=0 时, 仅仅在 v 1 ( t ) v_1 \left( t \right) v1(t) 作用下 C1 上的电压:
考虑 v 1 ( t ) = 0 v_1 \left( t \right) = 0 v1(t)=0 时, 仅在 v 3 ( t ) v_3 \left( t \right) v3(t) 作用下, C1 上的电压:
所以:
在根据
对上面表达式进行化简:
电路的系统函数为:
(2) 当 k = 2 k = 2 k=2 时, 对应的电路系统函数为:
进行 Laplace 反变换, 可以得到电路的单位冲击响应:
电路的单位阶跃响应:
进行 Laplace 反变换, 可以得到电路的单位阶跃响应:
下面利用 LTspice 对该电路进行仿真, 将仿真结果与上面计算公式进行对比。
▲ 图1.5.2 利用 LTspice仿真电路
电路的单位阶跃响应如下图所示。 可以看到仿真与计算结果绘制的曲线是一样的。从而验证了上述答案的正确性。
▲ 图1.5.4 仿真与计算曲线
六、求解系统函数
- 第一小题: (选做题)
□ 解答:
1、根据系统是因果、稳定、LTI系统, 可以知道系统的有利系统函数的极点都位于 s 平面的左半平面。
2、根据系统在 u ( t ) u\left( t \right) u(t) 的左腋下, 系统的输出为加v对可积, 表明 H ( s ) / s H\left( s \right)/s H(s)/s 的有炼狱包含着虚轴, 即 H ( s ) / s H\left( s \right)/s H(s)/s 没有 s = 0 s = 0 s=0 出的极点, 所以 H ( s ) H\left( s \right) H(s) 至少包含有一个 s = 0 s = 0 s=0 的零点。
3、根据系统在 t ⋅ u ( t ) t \cdot u\left( t \right) t⋅u(t) 的作用下, 系统的输出不是绝对可积, 因此, H ( s ) H\left( s \right) H(s) 在 s = 0 s = 0 s=0 处的零点不超过两阶, 所以系统函数可以写成:
4、根据
d
2
d
t
2
h
(
t
)
+
3
d
d
t
h
(
t
)
+
2
{{d^2 } \over {dt^2 }}h\left( t \right) + 3{d \over {dt}}h\left( t \right) + 2
dt2d2h(t)+3dtdh(t)+2 为有限长,也就是
(
s
2
+
3
s
+
2
)
H
(
s
)
\left( {s^2 + 3s + 2} \right)H\left( s \right)
(s2+3s+2)H(s) 不包含有任何极点, 所以
B
(
s
)
=
s
2
+
3
s
+
2
B\left( s \right) = s^2 + 3s + 2
B(s)=s2+3s+2 。
5、根据 H ( s ) H\left( s \right) H(s) 在无穷远点只有一个一阶零点, 说明 H ( s ) H\left( s \right) H(s) 的分子比分母阶次小于 1, 所以系统函数可以写成:
6、根据
H
(
1
)
=
0.4
H\left( 1 \right) = 0.4
H(1)=0.4 , 可以求得:
最终, 该系统的系统函数为:
系统具有两个极点, 分别为: p 1 = − 1 , p 2 = − 2 p_1 = - 1,p_2 = - 2 p1=−1,p2=−2 。 根据系统为因果系统, 所以系统函数的收敛域为: σ > − 1 \sigma > - 1 σ>−1 。
- 第二小题: (选做题)
□ 解答:
将 y ( t ) y\left( t \right) y(t) 进行 Laplace 变换:
由于 x ( t ) x\left( t \right) x(t) 是实数函数, 所以 x 1 ( t ) x_1 \left( t \right) x1(t) 应该包含有共轭函数:
所以:
对比LTI输出信号的表达式, 可以知道
s
0
=
4
+
3
j
s_0 = 4 + 3j
s0=4+3j 。
因为
Y
(
s
)
=
X
(
s
)
⋅
H
(
s
)
Y\left( s \right) = X\left( s \right) \cdot H\left( s \right)
Y(s)=X(s)⋅H(s)