信号与系统分析2025(春季)作业参考答案 - 第十一次作业

 

01 础作业


一、Laplace变换性质

1、求信号的初值和终值

  □ 解答: 根据 Laplace的初值和终值定理, 求取信号的初值和终值:

  (1)

  (2) 这个有理分式表达式是一个假分式, 先通过长除方法对它进行分解:

  (3) 这个有理分式表达式是一个假分式, 先通过长除方法对它进行分解:

  (4) 根据 Laplace变换的时移定理, 题目中的信号是如下信号延迟 t 0 = 1 {t_0} = 1 t0=1

  由此,可以判断信号的初值 f ( 0 + ) = 0 f\left( {{0_ + }} \right) = 0 f(0+)=0 。 由于 F 0 ( s ) {F_0}\left( s \right) F0(s) 在 s 平面的右半平面具有极点 1, 以及在原点有一颗 2 阶极点, 所以信号不具有终值。

二、z变换性质

1、利用 z 变换性质求解序列的 z 变换

  □ 解答:

  (1) 利用 z 变换的 变换域微分定理求解:

因此,

  (2) 应用 z 变的 位移定理:

  (3) 表达式的后面一项, 实际上是 ( − 1 ) k {\left( { - 1} \right)^k} (1)k u [ n ] u\left[ n \right] u[n] 的卷积。 根据 z 变换的卷积定理:

  下面再应用 z 变换 变换域的尺度定理:

  (4)

  首先有:


  那么, 根据 z 变换的位移定理:

  在根据 z 变换的指数加权特性:

  另外一种求解方法:

  (5)

2、初值和终值定理

  □ 解答:

2、初值和终值

  (1)

  (2)

  这是一个假分式, 通过长除方法将其展成 z 的多项式和真分式。

  其中常量项对应序列的初值, 即: x [ 0 ] = 1.25 x\left[ 0 \right] = 1.25 x[0]=1.25

  (3)


  (4)

  由于 X ( z ) X\left( z \right) X(z) 存在一个位于单位圆外的极点 z = 3 z = 3 z=3 ,所以序列的终值不存在。

3、求序列的卷积和乘积的z变换

  □ 解答:

  (1) 根据 z 变换的卷积定理求解。


  (2) 根据 z 变换的 变换域的卷积定理求解。

根据 X ( z ) X\left( z \right) X(z) 的收敛域,可知 ∣ v ∣ > 1 4 \left| v \right| > {1 \over 4} v>41 。 根据 H ( z ) H\left( z \right) H(z) 的收敛域, 可以知道 ∣ z / v ∣ < 1 / 2 \left| {z/v} \right| < 1/2 z/v<1/2 ,也就是 ∣ v ∣ > 2 ∣ z ∣ \left| v \right| > 2\left| z \right| v>2z 。 所以, 在上面的复变函数围线积分中, 包括有两个极点: 1 / 4 , 2 z 1/4,2z 1/4,2z 。 利用留有定理计算上述围线积分:

所以,

  (3)

  (4)

根据 X ( z ) , H ( z ) X\left( z \right),H\left( z \right) X(z),H(z) 的收敛域,可知: ∣ v ∣ > e − β , ∣ v ∣ < ∣ z ∣ \left| v \right| > e^{ - \beta } ,\left| v \right| < \left| z \right| v>eβ,v<z 。 所以上述围线积分包含的极点为 e − β e^{ - \beta } eβ 。 由此:

  对照典型信号 z 变换表格,可知:

  (5)

  序列的累加,可以看成序列 与 u [ n ] u\left[ n \right] u[n] 的卷积, 即:

  根据 z 变换的卷积定理,可知序累加和的 在变换等于序列的z变换乘以 u [ n ] u\left[ n \right] u[n] 的 z 变换。由于:

所以:

4、z变换的尺度特性

  □ 解答:

  (1)

  (2)

三、利用Laplace变换和z变换求解微分和差分方程

  □ 解答:

  (1) 对微分方程两边同时进行 Laplace 变换。


  求解 Y ( s ) Y\left( s \right) Y(s)


  对 Y ( s ) Y\left( s \right) Y(s) 进行因式分解:


  得到系统的完全响应:

  系统的零输入响应和零状态响应对应的 Laplace变换为:


  利用因式分解方法, 可以分别求出零状态响应 y z s ( t ) {y_{zs}}\left( t \right) yzs(t) 以及零输入响应 y z i ( t ) {y_{zi}}\left( t \right) yzi(t)

  (2) 对差分方程两边同时进行 单边 Z 变换

  求解 Y ( z ) Y\left( z \right) Y(z)

  将 Y ( z ) Y\left( z \right) Y(z) 进行因式分解:


  所以,差分方程的完全解为:


  方程的零状态以及零输入响应的 z 变换分别为:

  方程的零状态以及零输入响应分别为:

  (3) 对微分方程左右两边同时进行 Laplace 变换:

  求解 Y ( s ) Y\left( s \right) Y(s)


  方程的完全解为:

  方程的零状态响应以及零输入相应的 Laplace 变换分别为:



  这样, 零状态响应和零输入响应分别为:

  (4) 对差分方程两边同时做单边Z变换


  求解 Y ( z ) Y\left( z \right) Y(z)

  对它进行因式分解:


  所以方程的完全解为:



  所以系统的零状态与零输入响应分别为:


■ 相关文献链接:

### 关于信号与系统2025作业资料 对于2025春季信号与系统》课程的第二次作业要求,可以参考以往几年的教学安排来准备相应的学习材料和练习题。具体来说: #### 一、历年作业对比分析 为了更好地理解当前学年的作业标准,可以从过去三年即2023年至2024年间发布的作业要求入手进行研究[^1]。 - **2023年春季**:该年度提供了详细的作业指导说明以及完整的参考答案集合,有助于了解教师对学生解答的具体期望。 - **2024年春季**:不仅有常规的家庭作业布置情况介绍,还包含了模拟考试和正式考试的内容框架,这表明随着教学进度的发展,考核形式也在不断调整优化。 这些资源可以帮助学生熟悉不同类型的习题模式,并提前适应可能遇到的各种挑战。 #### 二、重点复习方向建议 基于上述参考资料中的提示,在准备过程中应当重点关注以下几个方面: - 掌握基本概念如卷积运算、傅里叶变换族(包括连续时间/离散时间)、快速傅立叶变换(DFT)及其应用领域; - 学会运用拉普拉斯变换和Z变换解决实际工程问题,特别是涉及到线性时不变(LTI)系统的稳定性判定等方面; - 对复杂度较高的主题像数字滤波器的设计原理也要有所涉猎,因为这类内容往往会在更深入的学习阶段成为考察热点[^4]。 ```python import numpy as np from scipy import signal # 定义一个简单的LTI系统传递函数H(s)=Y(s)/X(s),这里假设是一个低通RC电路模型 numerator = [1] denominator = [1, 1] sys = signal.TransferFunction(numerator, denominator) # 计算频率响应并绘制Bode图 w, mag, phase = sys.bode() plt.figure() plt.semilogx(w, mag) # Bode magnitude plot plt.title('Magnitude Response') plt.xlabel(r'Frequency [rad/s]') plt.ylabel(r'Magnitude [dB]') plt.figure() plt.semilogx(w, phase) # Bode phase plot plt.title('Phase Response') plt.xlabel(r'Frequency [rad/s]') plt.ylabel(r'Phase [degrees]') plt.show() ``` 此Python脚本展示了如何使用SciPy库创建一个简单的一阶低通滤波器实例,并通过Matplotlib可视化其幅度特性和相位特性曲线,这对于理解和实践信号处理理论具有很好的辅助作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值