01 基础作业
一、Laplace变换性质
1、求信号的初值和终值
□ 解答: 根据 Laplace的初值和终值定理, 求取信号的初值和终值:
(1)
(2) 这个有理分式表达式是一个假分式, 先通过长除方法对它进行分解:
(3) 这个有理分式表达式是一个假分式, 先通过长除方法对它进行分解:
(4) 根据 Laplace变换的时移定理, 题目中的信号是如下信号延迟 t 0 = 1 {t_0} = 1 t0=1 。
由此,可以判断信号的初值 f ( 0 + ) = 0 f\left( {{0_ + }} \right) = 0 f(0+)=0 。 由于 F 0 ( s ) {F_0}\left( s \right) F0(s) 在 s 平面的右半平面具有极点 1, 以及在原点有一颗 2 阶极点, 所以信号不具有终值。
二、z变换性质
1、利用 z 变换性质求解序列的 z 变换
□ 解答:
(1) 利用 z 变换的 变换域微分定理求解:
因此,
(2) 应用 z 变的 位移定理:
(3) 表达式的后面一项, 实际上是 ( − 1 ) k {\left( { - 1} \right)^k} (−1)k 和 u [ n ] u\left[ n \right] u[n] 的卷积。 根据 z 变换的卷积定理:
下面再应用 z 变换 变换域的尺度定理:
(4)
首先有:
那么, 根据 z 变换的位移定理:
在根据 z 变换的指数加权特性:
另外一种求解方法:
(5)
2、初值和终值定理
□ 解答:
2、初值和终值
(1)
(2)
这是一个假分式, 通过长除方法将其展成 z 的多项式和真分式。
其中常量项对应序列的初值, 即: x [ 0 ] = 1.25 x\left[ 0 \right] = 1.25 x[0]=1.25 。
(3)
(4)
由于 X ( z ) X\left( z \right) X(z) 存在一个位于单位圆外的极点 z = 3 z = 3 z=3 ,所以序列的终值不存在。
3、求序列的卷积和乘积的z变换
□ 解答:
(1) 根据 z 变换的卷积定理求解。
(2) 根据 z 变换的 变换域的卷积定理求解。
根据 X ( z ) X\left( z \right) X(z) 的收敛域,可知 ∣ v ∣ > 1 4 \left| v \right| > {1 \over 4} ∣v∣>41 。 根据 H ( z ) H\left( z \right) H(z) 的收敛域, 可以知道 ∣ z / v ∣ < 1 / 2 \left| {z/v} \right| < 1/2 ∣z/v∣<1/2 ,也就是 ∣ v ∣ > 2 ∣ z ∣ \left| v \right| > 2\left| z \right| ∣v∣>2∣z∣ 。 所以, 在上面的复变函数围线积分中, 包括有两个极点: 1 / 4 , 2 z 1/4,2z 1/4,2z 。 利用留有定理计算上述围线积分:
所以,
(3)
(4)
根据 X ( z ) , H ( z ) X\left( z \right),H\left( z \right) X(z),H(z) 的收敛域,可知: ∣ v ∣ > e − β , ∣ v ∣ < ∣ z ∣ \left| v \right| > e^{ - \beta } ,\left| v \right| < \left| z \right| ∣v∣>e−β,∣v∣<∣z∣ 。 所以上述围线积分包含的极点为 e − β e^{ - \beta } e−β 。 由此:
对照典型信号 z 变换表格,可知:
(5)
序列的累加,可以看成序列 与 u [ n ] u\left[ n \right] u[n] 的卷积, 即:
根据 z 变换的卷积定理,可知序累加和的 在变换等于序列的z变换乘以
u
[
n
]
u\left[ n \right]
u[n] 的 z 变换。由于:
所以:
4、z变换的尺度特性
□ 解答:
(1)
(2)
三、利用Laplace变换和z变换求解微分和差分方程
□ 解答:
(1) 对微分方程两边同时进行 Laplace 变换。
求解
Y
(
s
)
Y\left( s \right)
Y(s) :
对
Y
(
s
)
Y\left( s \right)
Y(s) 进行因式分解:
得到系统的完全响应:
系统的零输入响应和零状态响应对应的 Laplace变换为:
利用因式分解方法, 可以分别求出零状态响应
y
z
s
(
t
)
{y_{zs}}\left( t \right)
yzs(t) 以及零输入响应
y
z
i
(
t
)
{y_{zi}}\left( t \right)
yzi(t) 。
(2) 对差分方程两边同时进行 单边 Z 变换,
求解
Y
(
z
)
Y\left( z \right)
Y(z) ,
将 Y ( z ) Y\left( z \right) Y(z) 进行因式分解:
所以,差分方程的完全解为:
方程的零状态以及零输入响应的 z 变换分别为:
方程的零状态以及零输入响应分别为:
(3) 对微分方程左右两边同时进行 Laplace 变换:
求解 Y ( s ) Y\left( s \right) Y(s) :
方程的完全解为:
方程的零状态响应以及零输入相应的 Laplace 变换分别为:
这样, 零状态响应和零输入响应分别为:
(4) 对差分方程两边同时做单边Z变换。
求解
Y
(
z
)
Y\left( z \right)
Y(z) :
对它进行因式分解:
所以方程的完全解为:
所以系统的零状态与零输入响应分别为:
■ 相关文献链接: