用 Python 分析韦德职业生涯数据

2018 注定是不平凡的一年,这一年有太多我们熟知的大师离去。他们的离去代表着一个时代的终结,也代表这我们 90 后青春的落幕。我们这代 90 后是个男生都会看场 NBA 的比赛。

2013 那年我高二也是 NBA 球队热火队最火爆的时期,詹伟连线无人可挡。

 

那年的总决赛,热火大比分 2-3 落后马刺,当时第六场的最后几秒热火的比分还是落后于马刺,眼看就要输掉了比赛。那时候我们还在上课,但为了看热火这场生死大战,我和几个死党一起逃课。当时我们都觉得热火已经没有希望了,都准备要回去,但就在比赛快要结束时雷阿伦投入高难度扳平三分,从而把比赛拖入加时,最终逆转夺冠!我们几个当场就大喊起来:热火牛逼!

 

绝杀总是能让人激动不已!在NBA历史上,留下了不少的经典绝杀!我们的闪电侠韦德也是个中佼佼者,其中 2009 年对阵公牛一役完成抢断三分绝杀就是一大例证,绝杀之后韦德跑到站台上更是霸气的喊到「This is my house」。

 

 

当年的热火给我们的青春带来了太多的回忆,虽然曾经的队友,早已成为了彼此的对手。就像当年一起通宵的死党,如今都已变成陌生人,都在为现实奔波。

 

而就在昨天 12 月 11 日美国当地时间 10 日晚,NBA 常规赛湖人主场迎战热火队,这也是詹姆斯和韦德生涯最后一次常规赛对决。这场比赛就像多年以后老朋友再次相见,有太多不舍的回忆。赛后詹姆斯和韦德生互相交换了球衣,这个场景不知戳中多少球迷的心。

 

 

今天就带大家用 Python 分析韦德职业生涯的数据,多年以后或许还可以拿出这篇文章给自己的孩子诉说这自己的青春。

 

数据获取

 

数据的来源主要是爬 basketball-reference 网站上的数据。

 

 

网站地址:

 

https://www.basketball-reference.com/players/w/wadedw01.html

 

网站把韦德所有的生涯数据都展示出来,结构也很清晰我们只要用 requests + pyquery 解析就好。

 

 

最后我们把解析到的数据利用 pandas 保存到 excel 中即可。

 

具体的爬虫代码如下:

 

from pyquery import PyQuery as pq
from fake_useragent import UserAgent
import requests
import pandas as pd


def parse_html():
    url = "https://www.basketball-reference.com/players/w/wadedw01.html"
    ua = UserAgent()
    headers = {"User-Agent": ua.random}
    reponse = requests.get(url, headers=headers)
    if reponse.status_code == 200:
        html = reponse.text
        extract_htm(html)

def extract_htm(html):
    doc = pq(html)
    Dwyane_Wade_data = []
    data_items = doc.find("#div_per_game #per_game tbody tr").items()
    for itme in data_items:
        season = itme.find("th[data-stat='season'] a").text()
        age = itme.find("td[data-stat='age']").text()
        team = itme.find("td[data-stat='team_id'] a").text()
        league = itme.find("td[data-stat='lg_id'] a").text()
        position = itme.find("td[data-stat='pos']").text()
        games = itme.find("td[data-stat='g']").text()
        games_started = itme.find("td[data-stat='gs']").text()
        minutes_played_per_game = itme.find("td[data-stat='mp_per_g']").text()
        field_goals_per_game = itme.find("td[data-stat='mp_per_g']").text()
        field_goals_attempts_per_game = itme.find("td[data-stat='fga_per_g']").text()
        field_goal_percentage = itme.find("td[data-stat='fg_pct']").text()
        point_3_field_goal_per_game = itme.find("td[data-stat='fg3_per_g']").text()
        point_3_field_goal_percentage = itme.find("td[data-stat='fg3_pct']").text()
        point_2_filed_goals_per_game = itme.find("td[data-stat='fg2_per_g']").text()
        point_2_filed_goals_attempts_per_game = itme.find("td[data-stat='fg2a_per_g']").text()
        fg2_pct = itme.find("td[data-stat='fg2_pct']").text()
        efg_pct = itme.find("td[data-stat='efg_pct']").text()
        ft_per_g = itme.find("td[data-stat='ft_per_g']").text()
        fta_per_g = itme.find("td[data-stat='fta_per_g']").text()
        ft_pct = itme.find("td[data-stat='ft_pct']").text()
        orb_per_g = itme.find("td[data-stat='orb_per_g']").text()
        drb_per_g = itme.find("td[data-stat='drb_per_g']").text()
        trb_per_g = itme.find("td[data-stat='trb_per_g']").text()
        ast_per_g = itme.find("td[data-stat='ast_per_g']").text()
        stl_per_g = itme.find("td[data-stat='stl_per_g']").text()
        blk_per_g = itme.find("td[data-stat='blk_per_g']").text()
        tov_per_g = itme.find("td[data-stat='tov_per_g']").text()
        pf_per_g = itme.find("td[data-stat='pf_per_g']").text()
        pts_per_g = itme.find("td[data-stat='pts_per_g']").text()
        item_data = {'season': season, "age": age, "team": team, "league": league, "position": position, "games": games,
                "games_started": games_started, "minutes_played_per_game": minutes_played_per_game, "field_goals_per_game": field_goals_per_game,
                "field_goals_attempts_per_game": field_goals_attempts_per_game, "field_goal_percentage": field_goal_percentage,
                "point_3_field_goal_per_game": point_3_field_goal_per_game, "point_3_field_goal_percentage": point_3_field_goal_percentage,
                "point_2_filed_goals_per_game": point_2_filed_goals_per_game, "point_2_filed_goals_attempts_per_game": point_2_filed_goals_attempts_per_game,
                "fg2_pct": fg2_pct, "efg_pct": efg_pct, "ft_per_g": ft_per_g, "fta_per_g": fta_per_g, "ft_pct": ft_pct,
                "orb_per_g": orb_per_g, "drb_per_g": drb_per_g, "trb_per_g": trb_per_g, "ast_per_g": ast_per_g, "stl_per_g": stl_per_g,
                "blk_per_g": blk_per_g, "tov_per_g": tov_per_g, "pf_per_g": pf_per_g, "pts_per_g": pts_per_g}
        print(item_data)
        Dwyane_Wade_data.append(item_data)

    data = pd.DataFrame(Dwyane_Wade_data)
    data.to_csv("Dwyane_Wade_data.csv", encoding='utf_8_sig')


if __name__ == '__main__':
    parse_html()

 

最后保存的 excel 表如下:

 

 

出场次数和首发数据分析

 

首先我们对韦德生涯参加的场数和时间进行一个分析。

 

games:参与的比赛场数(都为82场)

games_start: 先发次数

age:年龄

minutes_played: 平均每场比赛进行的时间

 

韦德 22 岁就进入 NBA 打比赛,出道就打了 61 场比赛,首发 56 场,往后的几年时间里都是打球队首发人员。一个赛季按 82 场来算,韦德在 2008 - 09 赛季恐怖的达到了 79 场比赛。

 

 

平均每场比赛时间都在 30 分钟以上。

 

从这些数据可以看出韦德是队伍中的主力军,绝对的领袖。

 

投球命中率

 

韦德投球命中率平均在 0.47 。

 

 

2013-14 赛季达到职业生涯最大命中率:0.55。

 

由于篇幅的问题其他的数据就暂时不再继续分析,感兴趣的同学可获取相应的源代码进行分析,这里给大家一个单词对照表。

链接: https://pan.baidu.com/s/1PCQ-gEX-aaV5JvgDva_0lQ 提取码: dx73

 

数据名 含义
Rk -- Rank 排名
G -- Games 参与的比赛场数(都为82场)
MP -- Minutes Played 平均每场比赛进行的时间
FG--Field Goals 投球命中次数
FGA--Field Goal Attempts 投射次数
FG%--Field Goal Percentage 投球命中次数
3P--3-Point Field Goals 三分球命中次数
3PA--3-Point Field Goal Attempts 三分球投射次数
3P%--3-Point Field Goal Percentage 三分球命中率
2P--2-Point Field Goals 二分球命中次数
2PA--2-point Field Goal Attempts 二分球投射次数
2P%--2-Point Field Goal Percentage 二分球命中率
FT--Free Throws 罚球命中次数
FTA--Free Throw Attempts 罚球投射次数
FT%--Free Throw Percentage 罚球命中率
ORB--Offensive Rebounds 进攻篮板球
DRB--Defensive Rebounds 防守篮板球
TRB--Total Rebounds 篮板球总数
AST--Assists 辅助
STL--Steals 偷球
BLK -- Blocks 封阻
TOV -- Turnovers 失误
PF -- Personal Fouls 个犯
PTS -- Points 得分
  •  

在很多年后,当老詹和骚韦挺着日渐臃肿的肚子来到球场,看着场上的小詹和小腮帮在球场上尽情挥洒着天赋,一次次的空接暴扣,一次次的抢断反击,听着场下一声又一声的呐喊,会不会忽然就湿润了眼眶。

 

 

 

此文纪念我们逝去的青春。

 

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试