线性代数学习笔记20

本文探讨线性代数中的特征值和特征向量在矩阵对角化和幂运算中的作用。内容包括对角化的前提条件、矩阵幂的计算以及两个实际应用示例:求解向量序列和分析斐波那契数列的增长速度。
摘要由CSDN通过智能技术生成

这里第二十二课-对角化和A的幂

引言

这节课主要是讲特征值的作用,可以方便我们处理矩阵的幂,主要设计到两个内容,分别是对角化和A 的幂

对角化

基本前提:假设矩阵A有n个线性无关的特征向量,S 由n个线性无关的特征向量组成各列,有
A − A S = > 对 角 矩 阵 X A^-AS => 对角矩阵X AAS=>X

证明有:
A S = A [ x 1 x 2 x 3 … … ] = AS = A { \left[ \begin{array}{ccc} x_1 & x_2 & x_3……& \\ \end{array} \right ]}= AS=A[x1x2x3]= [ λ 1 x 1 λ 2 x 2 λ 3 x 3 … … ] = { \left[ \begin{array}{ccc} \lambda_1 x_1 & \lambda_2x_2 & \lambda_3x_3……& \\ \end{array} \right ]} = [λ1x1λ2x2λ3x3]= [ x 1 x 2 x 3 … … ] [ λ 1 0 0 … … 0 λ 2 0 … … 0 0 λ 3 … … … … ] { \left[ \begin{array}{ccc} x_1 & x_2 & x_3……& \\ \end{array} \right ]} { \left[ \begin{array}{ccc} \lambda_1 & 0 & 0……& \\ 0 & \lambda_2 & 0……& \\ 0 & 0 & \lambda_3……& \\ …… \end{array} \right ]} [x1x2x3]λ1000λ2000λ3
A S = S × 对 角 矩 阵 AS = S \times对角矩阵 AS=S×
=> A − A S = 对 角 矩 阵 A^-AS = 对角矩阵 AAS=

A 的幂

通过对上面的公式进行变形有
A = S − 对 角 矩 阵 S A = S^- 对角矩阵 S A=SS
所以我们利用该公式进行矩阵的幂运算
A 2 = S − 对 角 矩 阵 2 S A^2 = S^- 对角矩阵^2 S A2=S2S

即 A 的k次方的特征值为 A 的特征值的k次方,特征向量不变

  • 当 所有的矩阵的特征值绝对值小于1时,有 k − > ∞ , ∣ A K ∣ − > 0 k->∞,|A^K|->0 k>AK>0

基本前提的满足条件

如果没有n个线性无关的特征向量,无法完成对角化,因为公式中涉及到了逆元算!

  • 当A 有n个不相同的特征值是,可以肯定一定有n个线性无关的特
    征向量

  • 当A n个特征值有重复,不一定有n个线性无关的特征向量

应用1

u k = A u k − 1 , u 0 是 一 个 已 知 的 向 量 , 求 解 u 100 u_k = Au_{k-1},u_0 是一个已知的向量,求解u_{100} uk=Auk1,u0u100
我们容易知道 u 100 = A k u 0 u_{100} = A^ku_0 u100=Aku0
可以利用特征值、特征向量计算
假设A 是有n 个线性无关的特征向量,所以 u 0 u_0 u0 一定是可以分解成A 的特征向量的排列组合,即有
u 0 = c 1 x 1 + c 2 x 2 + … … = S C u_0 = c_1x_1 + c_2x_2 +…… = SC u0=c1x1+c2x2+=SC
A u 0 = c 1 λ 1 I x 1 + c 2 λ 2 I x 2 + … … Au_{0} = c1\lambda_1 Ix_1+c2\lambda_2 Ix_2+…… Au0=c1λ1Ix1+c2λ2Ix2+
A 100 = S 对 角 矩 阵 100 S − S C = S 对 角 矩 阵 100 C A^{100} = S对角矩阵^{100}S^- S C =S对角矩阵^{100}C A100=S100SSC=S100C

应用2

斐波那契数列有 F n = F n − 1 + F n − 2 F_n = F_{n-1}+F_{n-2} Fn=Fn1+Fn2,我们通过构造 u k = [ F k + 1 F k ] u_k = { \left[ \begin{array}{ccc} F_{k+1}\\ F_{k}\\ \end{array} \right ]} uk=[Fk+1Fk]联立
F n = F n − 1 + F n − 2 F_n = F_{n-1}+F_{n-2} Fn=Fn1+Fn2 F n − 1 = F n − 1 F_{n-1} = F_{n-1} Fn1=Fn1
u k = [ 1 1 1 0 ] u k − 1 u_k ={ \left[ \begin{array}{ccc} 1 & 1\\ 1 & 0\\ \end{array} \right ]}u_{k-1} uk=[1110]uk1,所以我们可以计算得到

  • 有一个思考点是:数列的增长速度是有较大的特征值决定的!
    我们看上面的计算式 A u 0 = c 1 λ 1 I x 1 + c 2 λ 2 x 2 + … … Au_{0} = c1\lambda_1 Ix_1+c2\lambda_2x_2+…… Au0=c1λ1Ix1+c2λ2x2+可以看到其实增长速度和较大的那个数关系比较大~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值