【目标检测】DSSD:Deconvolutional Single Shot Detector

论文:《DSSD:Deconvolutional Single Shot Detector》

论文地址https://arxiv.org/abs/1701.06659

1、背景

SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能。

DSSD针对小目标鲁棒性太差,提出了以下两个贡献:
1. 把SSD的基准网络从VGG换成了Resnet-101,增强了特征提取能力;
2. 使用反卷积层(deconvolution layer )增加了大量上下文信息。

2、改进

DSSD将SSD的Vgg16网络用Resnet-101进行了替换,在分类回归之前引入了残差模块,在SSD添加的辅助卷积层后又添加了反卷积层形成“宽 - 窄 - 宽”的“沙漏”结构。

DSSD相比SSD的一个最大的提升在于对小目标的检测度上DSSD有了很大的提升,文章的最后部分也展示了小目标的检测效果。即便如此,DSSD的检测速度相比SSD慢了很多,其中很大一部分原因在于引入的Resnet-101太深。

SSD与DSSD的网络模型如下图所示:

图中的蓝色部分是SSD在基础网络的基础上添加的辅助层,红色部分是DSSD在SSD的后面添加的反卷积层,红色的反卷积层和蓝色的卷积层对应尺度相同,融合后再送入上面的蓝色框框的Prediction Module模块进行分类回归。

3、DSSD和SSD的区别

3.1、Resnet-101替换VGG网络

3.2、PM(Prediction Module)模块

DSSD还引入了新的Prediction Module,如下图,可以看到主要使用的还是ResNet的short cut思想。

左图(a)是SSD中用于分类和回归用的结构,即在特征图上直接连接1*1的卷积,一个用来分类,一个用于回归。

图(c)是文中用于分类和回归的最优结构。

图(b)、图(c)、图(d)均是在SSD的基础上将原有的结构改成Resnet模块。

这么做的目的是提取更深维度的特征用于分类和回归。添加的位置在反卷积结构之后,分类和回归之前。

Eltw sum有两种,一种点和、一种点积,最后实验证明点积的效果最好。

3.3、DM(Deconvolutional Module)模块

 

SSD是一层一层下采样,然后分别在这些feature map上进行预测。

DSSD则是在后面加入了很多的Deconvolution Module,通过逆卷积算法feature map上采样,然后与前面的feature map通过点积产生新的feature map,包含上下文的信息。

为什么加入了Deconv层就能提高模型在小目标检测上的精度呢?

  首先,我们都知道,随着Conv层加深,越往后feature map的分辨率越小,同时包含的语义信息越高。而小目标是在浅层检测的,因此feature map语义信息弱,分类不准也是正常的;

  而文中通过Deconv层,将深层强语义的feature map放大,与浅层feature map结合,产生的新feature map语义也比浅层的强,分类自然更准一些。

4、总结

        提高浅层的表征能力,是可以提高类似检测器对小目标的检测能力。

  DSSD=Deconv+Predict Module+SSD

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值