1、使用GPU和CPU的方法。
y.cpu()使用CPU进行计算。
y.cuda(),使用GPU进行计算。
2、one-hot encode(独热编码)
独热码是一组数,其中只有一个值为1,其余都是0。同样的,一组数中只有一个0,而其余都为1则称为独冷码。
举例:
如四类物品,标签为1,2,3,4.
采用独热编码,一个标签对应一个编码:
1:[1,0,0,0]
2:[0,1,0,0]
3:[0,0,1,0]
4:[0,0,0,1]
为什么要用独热编码呢?
- 使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。
- 将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。
- 将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。
3、命令行参数解析器--argparse
argparse 是 Python 内置的一个用于命令项选项与参数解析的模块,通过这个我们可以获取在命令行输入的内容。
使用方法:
- 导入argparse:import argparse
- 创建ArgumentParser()对象
- 调用add_argument()方法添加参数
- 使用parse_args()添加解析参数
import argparse
parse = argparseArgumentParser('Model')#Model是自己定义的名字
parse.add_argument('--model',type=str,default='mymodel',help='model name[default:mymodel]')
return parser.parse_args()