系统建模
设AP是一组原子命题,即对变量,常量和谓词符号的布尔表达式。 Clarke等人在AP上定义Kripke结构为4元组M =(S,I,R,L)由…组成
- 一组有限的状态S.
- 一组初始状态I⊆S.
- 完全变迁关系R⊆S×S,即∀s∈S∃s’∈S使得(s,s’)∈R。
- L:S→2AP是标记函数,它标识在该状态下为真的原子命题集合。
由于R是左总数,因此总是可以通过Kripke结构构建无限路径。死锁状态可以通过单个传出边缘建模回自身。标记函数L为每个状态s∈S定义在s中有效的所有原子命题的集合L(s)。
结构M的路径是状态序列 ρ = s 1 , s 2 , s 3...... , ρ= s1,s2,s3 ......, ρ=s1,s2,s3......,使得对于每个i> 0, R ( s i , s i + 1 ) R(s_i,s_i + 1) R(si,si+1)成立。路径ρ上的单词是一系列原子命题的集合 w = L ( s 1 ) , L ( s 2 ) , L ( s 3 ) , . . . , w = L(s_1),L(s_2),L(s_3),..., w=L(s