Zero-shot Learing /One-shot Learing 属于同类问题,就是指训练样本中某类数据太少或直接就没有时,这时训练的模型依然可以满足这个类,这应该就是指模型的泛化能力了。
分别来讲
Zero-shot Learing 训练样本里面没有这个类,但是训练好模型后 输入这个类的数可以达到效果
One-shot Learing 类别下训练样本只有一个或者很少,但是依然可以分类
Zero-shot Learing /One-shot Learing 属于同类问题,就是指训练样本中某类数据太少或直接就没有时,这时训练的模型依然可以满足这个类,这应该就是指模型的泛化能力了。
分别来讲
Zero-shot Learing 训练样本里面没有这个类,但是训练好模型后 输入这个类的数可以达到效果
One-shot Learing 类别下训练样本只有一个或者很少,但是依然可以分类