图像处理
文章平均质量分 90
zizi7
这个作者很懒,什么都没留下…
展开
-
[图像拼接]APAP算法及相关问题研究
目录APAP算法思路几个问题SVD在最小二乘中的应用DLT求单应性矩阵HMoving DLT求局部单应性矩阵实现的小细节文献图像拼接首先通过一些手段(标定、SIFT等特征点、其他传感器等)获取图像间的对应关系(2D-2D)。这个对应关系可以用单应性矩阵HHH(也称透视变换)描述[x′y′w′]=[h00h01h02h10h11h12h20h21h22][xyw]=H[xyw](1)\begin{aligned}\left[\begin{matrix}x'\\y'\\w'\end{matrix}\ri原创 2020-10-10 08:31:04 · 4274 阅读 · 5 评论 -
图像增强(3)-- 暗通道去雾
这是图像去雾方向的一个里程碑式方法【1】,简单有效,是何凯明成名作(CVPR09 best paper) &nb...原创 2020-01-14 13:41:07 · 2047 阅读 · 0 评论 -
图像增强(2)-- 3GGMM
这是文章《Restoration of Unevenly Illuminated Images》【1】提出的一种方法,经过测试没有MSRCR的方法好(也有可能是我复现的问题)。但思路比较有意思所以记录一下这种方法认为光照不均匀图像的灰度直方图可以用一个高斯混合模型拟合,该模型包含3个高斯分布,分别代表过暗、过曝和正常3部分内容 – (3GGMM) a three-component genera...原创 2020-01-06 14:33:12 · 901 阅读 · 1 评论 -
图像增强(1)-- Retinex
Retinex方法Retinex是由 Retina 和 Cortex 两个词组成,该理论认为物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的。由此观察者看到的图像S是由物体表面对入射光L反射得到的,反射率R由物体本身决定与入射光L无关:S(x,y)=R(x,y)L(x,y)S(x,y) = R(x,y)L(x,y)S(x,y)=R(...原创 2019-12-16 13:45:15 · 1279 阅读 · 0 评论 -
图像语义分割(2)- SegNet
SegNet【1】是FCN 的一个改进版,由 Cambridge 提出,旨在解决自动驾驶或智能机器人的图像语义分割原创 2017-08-15 17:03:41 · 4075 阅读 · 0 评论 -
图像语义分割代码实现(2)
针对《图像语义分割(2)- SegNet》介绍的 SegNet 算法,主要参考官方项目主页,在 CamVid 数据集上做训练和测试原创 2017-08-17 14:42:22 · 5697 阅读 · 0 评论 -
图像语义分割代码实现(1)
针对《图像语义分割(1)- FCN》介绍的FCN算法,以官方的代码为基础,在 SIFT-Flow 数据集上做训练和测试。介绍了如何制作自己的训练数据数据准备原创 2017-08-14 18:09:21 · 18461 阅读 · 4 评论 -
Selective Search 算法
由[Uijlings J R R在2012年的IJCV][1]上提出。 方法以[P. F. Felzenszwalb在2004年的IJCV发表的基于图的图像分割][2]为基础,考虑色彩、纹理和尺寸的相似度,输出所有可能目标的位置,为后续的目标识别提供基础。算法分析算法使用[图像分割方法][2]对图像做初始分割,提出分层分组方法(图1)对分割的结果做筛选和归并,最终输出所有可能位置。step1:计算区原创 2017-04-20 17:23:29 · 11346 阅读 · 1 评论 -
基于距离变换的图像匹配
之前一直以为距离变换的意义就在于骨架抽取,看到一篇论文用距离变换的方式来实现匹配,配合倒角距离变换(Chamfer Distance Transform)可以达到快速匹配的效果原创 2017-01-09 22:02:12 · 3301 阅读 · 0 评论 -
图像直方图相关总结
主要讨论直方图均衡化、直方图规定化(匹配)、局部直方图、基于直方图统计的图像增强原创 2016-01-14 16:48:16 · 6952 阅读 · 1 评论 -
Gabor滤波器
Gabor是一个用于边缘提取的线性滤波器,其频率和方向表达与人类视觉系统类似,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,因此十分适合纹理分析。原创 2016-11-06 16:38:41 · 32597 阅读 · 6 评论 -
图像分割技术(3)
接上篇 图像分割技术(2)5. 基于运动的分割严格说来这部分应该属于运动检测,是计算机视觉的内容,有光流,卡尔曼,meanshift。。。对于图像处理,更侧重的是通过分析和转换,突出运动特征。这里从空间域和频率域上介绍5.1 空间域基本思路是帧间做差,按参考帧的不同,又分为帧差法和累积差值。前者使用相邻帧做差,后者固定一帧作为参考,所有后续帧与之做差。帧差:按对原创 2016-05-20 10:41:51 · 1638 阅读 · 0 评论 -
表示和描述(2)
接上篇 表示和描述(1)边界描述主要讨论边界的形状数描述、傅里叶描述和其他简单的描述。1)基础描述边界长度:边界的像素数粗略近似边界直径:相隔最远的两个点的距离(链码一节介绍的长短轴)边界偏心率:长轴/短轴其他规范化近似:外接圆、外接矩形、外接凸包2)形状数描述参考表示和描述(1)的Freeman编码,图1-2形状编号的长度即为形状数的阶。这原创 2016-05-27 15:50:47 · 9328 阅读 · 0 评论 -
图像语义分割(3)- Dilated Convolutions
Dilated Convolutions【1】直接丢掉池化层,使用膨胀(空洞)卷积的方法实现原创 2017-08-18 16:22:33 · 11417 阅读 · 3 评论 -
图像语义分割(1)- FCN
在图像处理领域,图像的分割主要考虑像素灰度的变化,区分不同的前后景。之前的一个系列《图像分割技术(1)》对主流算法做了概述图像的语义分割则不仅是区分每个像素的前后景,更需要将其所属类别预测出来,属于计算机视觉领域原创 2017-08-11 15:12:37 · 28351 阅读 · 7 评论 -
灰度相机与彩色相机的成像原理
无论是CCD还是CMOS,其原理都是将光子转换为电子,其中光子数目与电子数目成比例。对每个像素,统计其电子数目就形成反映光线强弱的灰度图像。 图1. 根据电子数目得到灰度图像但是在这里,光子的波长,即颜色信息丢失了。为了获得彩色图像,可以首先将光线过滤为红、绿、蓝三种光子,然后使用三个CCD(CMOS)分别感光,最后成...原创 2018-11-27 17:25:14 · 13314 阅读 · 3 评论 -
灰度共生矩阵GLCM
灰度共生矩阵GLCM主要用来描述图像的纹理特征原创 2017-11-26 17:58:46 · 1194 阅读 · 0 评论 -
图像区域特征
以 Halcon 里支持的 Region 特征为基础,做概念总结形状特征原创 2017-08-23 15:38:33 · 6822 阅读 · 1 评论 -
图像语义分割(4)- DeepLab_v1
简单来说,DeepLab_v1【1】就是 FCN + CRF(条件随机场)原创 2017-09-01 16:30:00 · 1563 阅读 · 0 评论 -
使用Halcon实现图像处理
Halcon的使用逻辑是:首先用 HDevelop 完成算法设计和验证,然后导出为 C/C++、VB、C# 完成算法实现原创 2017-09-16 13:39:40 · 18692 阅读 · 1 评论 -
表示和描述(3)
接上篇 表示和描述(2)主分量描述主分量描述适用于边界和区域。用在区域(图像)上可以抽取方差最大的分量(主分量),用在边界上可以对其做缩放、平移和旋转的归一化。主分量(PCA)一般用于数据降维,因为大特征值对应图像细节(高频)。主分量的计算过程可归纳为(具体分析参考):由多组特征向量计算均值向量m,由此得到协方差矩阵,计算该矩阵(实对称)的特征值,按从大到小排列,选择前原创 2016-05-27 16:52:23 · 957 阅读 · 0 评论 -
表示和描述(1)
表示和描述应该是个递进的关系,表示旨在以更(精确/方便/高效)的方式组织数据,而描述旨在从表示中总结某种模式以便于任务的完成。前者更贴近数据,后者更贴近应用。表示部分:边界表示描述部分:边界描述、区域描述、关系描述、主分量描述边界表示主要分2个阶段:边界追踪(轮廓提取)、基于特定目标(精确/方便/高效)的边界表示。边界追踪部分主要介绍Moore算法;边界表示部分主要介绍Free原创 2016-05-26 17:12:31 · 2596 阅读 · 0 评论 -
图像分割技术(2)
接上篇图像分割技术(1)2.2 全局阈值分割的改进方法原创 2016-03-24 10:47:41 · 3371 阅读 · 0 评论 -
最大稳定极值区域(MSER)检测
MSER算法原创 2015-12-22 15:00:33 · 34463 阅读 · 2 评论 -
《图像局部不变性特征与描述》阅读笔记(3)-- 点与边缘检测
《图像局部不变性特征与描述》阅读笔记(3)-- 点与边缘检测原创 2015-12-04 14:31:05 · 1415 阅读 · 0 评论 -
Canny边缘检测
Canny边缘检测算子原创 2015-12-04 09:54:40 · 1764 阅读 · 0 评论 -
Harris角点检测(2)-- Harris-Laplace
Harris-Laplace算法原创 2015-12-01 18:00:23 · 5357 阅读 · 1 评论 -
SUSAN角点检测
SUSAN角点检测算法原创 2015-12-02 15:57:31 · 2356 阅读 · 0 评论 -
Harris角点检测(1)
Harris角点检测算法原创 2015-11-30 14:37:21 · 1534 阅读 · 0 评论 -
(LOG)Laplacian of Guassian & (DOH)Determinant of Hessian 斑点检测
LOG与DOH斑点检测原创 2015-11-26 15:51:49 · 7075 阅读 · 2 评论 -
《图像局部不变性特征与描述》阅读笔记(2)-- 图像尺度空间
对于未知场景,计算机没办法预知待检目标的尺度。因此需要对图像在不同尺度下进行描述总的来说,目前有两种尺度空间描述体系:金字塔多分辨率、高斯尺度空间金字塔多分辨率金字塔是早期图像处理领域多尺度描述的主要方法。将经过低通滤波器的图像按隔行、隔列采样,得到一组空间尺寸以1/4的比率逐步降低的集合虽然金字塔化的计算复杂度低,但缺乏坚实的理论依据,不能获得图像中目标的尺度(除非知原创 2015-11-27 18:01:31 · 1862 阅读 · 0 评论 -
SURF特征检测
SIFT使用LOG的简化算法DOG以提升检测效率,SURF(speeded up robust features)则是对DOH进行简化。虽然SIFT被认为是最有效和最常用的特征提取算法,但因为计算较为复杂,很难达到实时的速度;SURF将DOH的高斯二阶微分模板进行了近似简化,引入了积分图像的概念,将卷积运算简化为几个简单的加减运算,实验表明SURF较SIFT要快3倍左右。原创 2015-12-13 14:24:27 · 3518 阅读 · 0 评论 -
SIFT特征检测
Lowe提出的SIFT(Scale Invariant Feature Transform)是计算机视觉里影响力非常大的一个算法,其使用LOG的近似算法DOG(Difference of Gaussians)实现快速特征检测,然后对待选点进行位置的精调和筛选,最后考察其邻域,获得特征的矢量性描述。SIFT特征效率高(优化后能达到实时的效果),具有尺度不变性、旋转不变性、部分的仿射不变性。原创 2015-12-09 20:23:58 · 1667 阅读 · 0 评论 -
空间滤波&频域滤波(1)
空间滤波和频域滤波原创 2016-01-24 15:04:00 · 7919 阅读 · 0 评论 -
《图像局部不变性特征与描述》阅读笔记(5End)-- 特征点匹配、各种检测算子的性能评估
特征点匹配算法以SIFT算法为例,当对两幅图像提取了SIFT特征向量后,需要对其建立一一的对应关系。这里就涉及到两个步骤:特征向量的最近邻搜索、匹配对的提纯(1)特征向量的最近邻搜索对一幅图像的每个SIFT特征向量,搜索另一幅图像中与之最相邻的特征向量(欧式距离最短)这一步实际上就是K近邻搜索,考虑到特征点数目一般较大,需要使用快速K近邻搜索算法,文章K近邻快速算法 -原创 2016-01-07 11:11:00 · 2269 阅读 · 0 评论 -
空间滤波&频域滤波(2)
离散傅里叶变换、频域滤波器原创 2016-01-25 23:30:47 · 10669 阅读 · 0 评论 -
图像分割技术(1)
分割是将图像细分为子区域,这些子区域互不重叠,并集为初始图像,每个子区域内的像素分布符合预定规则。原创 2016-03-22 22:43:30 · 4065 阅读 · 0 评论 -
图像压缩
1. 理论压缩率:C=b/b',其中b是原始数据大小,b'为压缩后数据大小数据冗余的原因:1)编码冗余用于表示数据的码字所占空间比该数据本身空间更大。压缩算法中一般对高概率的数据用短码字,低概率的数据用长码字。2)空间和时间冗余除了边缘等少数情况,图像数据一般是邻域(空间)相关的;类似的,视频帧之间大部分情况也是时间相关的。3)不相关信息对于应用领域(对于图原创 2016-02-24 14:50:52 · 2223 阅读 · 0 评论 -
图像小波分析
本文旨在对图像处理中的小波分析做一个概要性的记录和介绍1. 背景傅里叶变换可以将信号表示为无限三角函数的累加形式,从而实现将信号从空间域到频率域的转换。然而这种转换丢失了信号时空域的信息(只知道频率及其幅值,但不知道该频率发生的空间位置,可以类比直方图),因此无法做局部分析。短时傅里叶变换通过引入一个时间窗函数试图改进傅里叶的局部缺陷,但由于窗函数的尺寸是固定的,不能同时对信号高频和低原创 2016-02-22 16:01:31 · 14311 阅读 · 0 评论 -
图像形态学处理(3)
接上篇图像形态学处理(2)2. 灰度级图像形态学灰度级图像形态学适用于这两种情形:应用希望保留图像灰度阶、需要在二值化前做预处理以突出某些特征原创 2016-03-17 23:09:28 · 6697 阅读 · 0 评论