刚体变换: 所谓刚体 ,是指物体内部任意两点间的距离保持不变。例如 ,可将人脑看作是一个刚体。处理人脑图像 ,对不同方向成像的图像配准常使用刚体变换 。 刚体变换可以分解为旋转和平移
交大老师的课
线性配准
刚体配准是线性配准的一小部分
三个基本操作:
- Translation 平移
- Scaling 缩放
- Rotation 旋转
线性配准不允许局部变化,倾向于关注全局变化,且不局限于物体是否为刚性
刚体变化还分2D和3D
仿射变化
B-spline
二维仿射变化
- 平移
Translation
x
1
=
1
x
0
+
0
y
0
+
t
x
x_1 =1 x_0 + 0 y_0+t_x
x1=1x0+0y0+tx
y
1
=
0
x
0
+
1
y
0
+
t
y
y_1 =0 x_0 + 1 y_0+t_y
y1=0x0+1y0+ty
- 旋转
Rotation
x
1
=
c
o
s
θ
x
0
+
s
i
n
θ
y
0
+
0
x_1 =cos\theta x_0 + sin\theta y_0+0
x1=cosθx0+sinθy0+0
y
1
=
−
s
i
n
θ
x
0
+
c
o
s
θ
y
0
+
0
y_1 =-sin\theta x_0 + cos\theta y_0+0
y1=−sinθx0+cosθy0+0
- 缩放
Scaling
x
1
=
S
x
x
0
+
0
y
0
+
0
x_1 =S_x x_0 + 0 y_0+0
x1=Sxx0+0y0+0
y
1
=
0
x
0
+
S
y
y
0
+
0
y_1 =0 x_0 + S_y y_0+0
y1=0x0+Syy0+0
- 剪切
Shear
x
1
=
x
0
+
h
y
0
+
0
x_1 =x_0 +h y_0+0
x1=x0+hy0+0
y
1
=
0
x
0
+
1
y
0
+
0
y_1 =0 x_0 + 1 y_0+0
y1=0x0+1y0+0
三维刚体变换
XYZ三轴变化
-
Translations
[ 1 0 0 X t r a i n s 0 1 0 Y t r a i n s 0 0 1 Z t r a i n s 0 0 0 1 ] \begin{bmatrix} 1 & 0 &0 &X trains \\ 0 & 1 & 0 &Y trains \\ 0 &0&1 & Z trains \\ 0 & 0 & 0 & 1\end{bmatrix} \quad ⎣⎢⎢⎡100001000010XtrainsYtrainsZtrains1⎦⎥⎥⎤ -
Pitch
about X axis
[ 1 0 0 0 0 c o s θ s i n θ 0 0 − s i n θ c o s θ 0 0 0 0 1 ] \begin{bmatrix} 1 & 0 &0 &0 \\ 0 & cos\theta & sin\theta &0 \\ 0 &-sin\theta &cos\theta & 0 \\ 0 & 0 & 0 & 1\end{bmatrix} \quad ⎣⎢⎢⎡10000cosθ−sinθ00sinθcosθ00001⎦⎥⎥⎤
- Pitch
about Y axis
[ c o s θ 0 s i n θ 0 0 1 0 0 − s i n θ 0 c o s θ 0 0 0 0 1 ] \begin{bmatrix} cos\theta & 0 &sin\theta &0 \\ 0 & 1 & 0 &0 \\ -sin\theta &0 &cos\theta & 0 \\ 0 & 0 & 0 & 1\end{bmatrix} \quad ⎣⎢⎢⎡cosθ0−sinθ00100sinθ0cosθ00001⎦⎥⎥⎤
- Yaw
about Z axis
[ c o s θ s i n θ 0 0 − s i n θ c o s θ 0 0 0 0 1 0 0 0 0 1 ] \begin{bmatrix} cos\theta & sin\theta &0 &0 \\ -sin\theta & cos\theta & 0 &0 \\ 0 &0 &1 & 0 \\ 0 & 0 & 0 & 1\end{bmatrix} \quad ⎣⎢⎢⎡cosθ−sinθ00sinθcosθ0000100001⎦⎥⎥⎤
其他
voxel-to-world
有影射过程
image B (source) to image A (target)
有一个转换和逆转换的过程
Analyze文件用左手法则
Talairach & Tournoux ( TT )用右手法则