Multivariate Time-series Anomaly Detection viaGraph Attention Network

多变量时间序列的异常检测在数据挖掘研究和工业应用中都具有重要意义。最近的方法在这一主题方面取得了重大进展,但仍然存在局限性。一个主要限制是它们不能明确地捕捉不同时间序列之间的关系,导致不可避免的误报。

本文提出一种新的自监督多元时间序列异常检测框架来解决该问题。该框架将每个单变量时间序列视为一个单独的特征,并并行包含两个图注意力层,以学习多元时间序列在时间维度和特征维度上的复杂依赖关系。联合优化了基于预测的模型和基于重构的模型,通过单时间戳预测和整个时间序列重构的组合,获得了更好的时间序列表示。通过广泛的实验证明了该模型的有效性。所提出的方法在三个真实的数据集上优于其他最新的模型。进一步的分析表明,该方法具有良好的可解释性,可用于异常诊断。

阅读者总结:很简单的模型和想法

 

 方法:

我们的解决方案:本文提出了一个新的框架- mtat - gat(基于图注意力网络的多元时间序列异常检测),以解决之前解决方案的局限性。该方法将每个单变量时间序列视为一个单独的特征,并试图显式地建模不同特征之间的相关性,同时对每个时间序列内的时间依赖性进行建模。我们模型中的关键成分 two graph attention layers,namely the feature-oriented graph attention layer和 the time-oriented graph attention layer.。面向特征的图关注层捕捉多个特征之间的因果关系,面向时间的图关注层强调沿时间维度的依赖关系。此外,我们联合训练了一个基于预测的模型和一个基于重构的模型,以更好地表示时间序列数据。两个模型可以通过联合目标函数同时优化。

 

 

Graph Attention

    1) Feature-oriented graph attention layer:

      将多元时间序列看作一个完全图,其中每个节点表示一个特征,每条边表示两个对应特征之间的关系。这样,可以通过图注意力操作仔细捕捉相邻节点之间的关系

   2) Time-oriented graph attention layer:

另一方面,我们利用图注意网络的力量来捕获时间序列中的时间依赖性。

Joint Optimization

在训练过程中,两个模型的参数同时更新。损失函数定义为两个优化目标的和,即loss = Lossfor + Lossrec,其中Lossfor为基于预测模型的损失函数,Lossrec为基于重构模型的损失函数。 

1) Forecasting-based model

2) Reconstruction-based model:

.....................................................................

实验跳过......................... 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值