Unsupervised Time Series Outlier Detection with Diversity-Driven Convolutional Ensembles(VLDB2020)

随着社会、医疗、工业和科学过程的全面数字化,传感技术正在部署,产生越来越多的时间序列数据,从而推动大量新的或改进的应用。在这种情况下,异常值检测通常很重要,虽然存在基于神经网络的解决方案,但它们在精度和效率方面都有改进的空间。为了实现这些改进,本文提出一种多样性驱动的卷积集成。为了提高精度,集成使用了多个基于卷积序列到序列自动编码器的基本异常检测模型,这些模型可以捕获时间序列中的时间依赖关系。此外,一种新的多样性驱动的训练方法保持了基本模型之间的多样性,以提高集成的精度。为了提高效率,该方法在训练过程中可以实现高度并行。此外,它能够将一些模型参数从一个基本模型迁移到另一个基本模型,从而减少了训练时间。报告了使用真实世界多元时间序列的广泛实验,为新方法的设计选择提供了见解,并提供了证据,证明它能够提高精度和效率。

阅读者总结:这篇论文是在编码器中使用集成学习的,提高基础模块的多样性。这篇论文在真正模型创新上并突出。集成学习的关键点在于各个模型权重参数的设置,这点其实很难权衡。其次这篇论文还是要结合代码来看,因为在模型设计上,没有太多理论上的依据,似乎更多是工程上的效果驱动。

注意:无监督的异常检测算法

 Convolutional Autoencoder CAE

从使用卷积序列到序列自动编码器CAEs的基本模型中构建CAE-Ensemble。CAE将卷积神经网络(cnn)与序列到序列架构相结合,如图3所示。首先,CAE将时间序列窗口T嵌入到向量中,以捕获T中观察的内容和位置。然后将这些向量提供给编码器,编码器使用1D CNN来提取捕获T中时间依赖的特征,然后将特征输出为隐藏状态。接下来,解码器使用另一个1D CNN从嵌入向量和编码器的隐藏状态中提取特征。解码器的输出是另一组隐藏状态。由于1D CNN不涉及递归计算,因此可以对不同的时间戳并行执行1D CNN。这提高了效率。最后,使用注意力层来组合编码器和解码器的隐藏状态,并将其结果用于重建时间序列。

 Diversity-Driven Ensembles

我们将提出的CAEs作为集成中的基本模型,称为CAE-Ensemble。集成通常能够通过组合单个基本模型[7]的输出来提高整体精度。一种简单的方法是首先训练多个基本模型。然后,利用每个基本模型重构嵌入时间序列x。所有基本模型重构的时间序列的平均值作为最终重构的集成时间序列

 

 

 实验部分跳过。。。。。。。

。。。。。。。。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值