To Index or Not to Index: Optimizing Exact Maximum Inner Product Search

精确最大内积搜索(MIPS)是推荐系统和高维相似性搜索中的一项重要任务。解决精确MIPS的蛮力方法在计算上是昂贵的,因此刺激了针对该任务的新索引和剪枝技术的最新发展。本文展示了一种硬件高效的蛮力方法——阻塞矩阵乘法(BMM),对于某些(但不是所有)输入,其性能可以超过最先进的MIPS求解器一个数量级。

本文还提出了一种新的MIPS解决方案MAXIMUS,利用了硬件效率和搜索空间的剪枝。与BMM一样,MAXIMUS比其他求解器快一个数量级,但也只是针对某些输入。由于没有单一的解决方案为所有输入提供最佳的运行时性能,本文引入了一个新的数据依赖优化器OPTIMUS,以最小的开销在线选择给定输入的最佳MIPS求解器。在广泛研究的MIPS数据集上,OPTIMUS和MAXIMUS的性能平均比最先进的MIPS求解器高出3.2倍,最高可达10.9倍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值