Effective Travel Time Estimation: When Historical Trajectories over Road Networks Matter

Effective Travel Time Estimation: When Historical Trajectories over Road Networks Matter(sigmod2020)

本文研究了OD输入由一个OD对和一个出发时间组成的出发-目的地(OD)旅行时间估计问题。本文提出一种新的基于神经网络的预测模型,充分利用了文献中忽略的一个重要事实——对于过去的OD行程,其旅行时间通常与它所沿着的轨迹有关,而在预测期间并不存在。在训练阶段,目标是为OD输入及其附属轨迹设计新的表示,使它们在潜空间中彼此接近。首先,将OD对及其附属(历史)轨迹与道路网络进行匹配,并利用路段嵌入来表示它们的空间属性。之后,将与轨迹相关的时间戳与时间槽进行匹配,并利用时间槽嵌入来表示时间属性.接下来,构建一个时序图来捕获时间槽嵌入的周和日周期性。最后,设计了一种有效的编码来表示轨迹的时空属性。为了将每个OD输入与其关联的轨迹相绑定,还将OD输入编码为一个隐藏表示,使隐藏表示接近于轨迹的时空表示。在预测阶段,我们只使用OD输入,得到OD输入的隐藏表示,并使用它来生成旅行时间。在真实数据集上的大量实验表明,该方法具有较高的有效性,优于现有方法。

研究问题:

1. 任何现有的深度学习工作都没有充分利用历史行程记录的轨迹 

 2. 首先,给定历史出行记录,分别为OD输入及其附属轨迹设计新的表示,使它们在潜空间中相互接近,仍然是一个关键挑战。其次,这样的轨迹只在模型训练阶段(对于过去的出行)可用,而在预测阶段不存在

研究内容:

本文设计了一种新的基于神经网络的方法DeepOD,旨在利用历史轨迹和道路网络的力量来实现有效的OD行程时间估计。

对于OD输入相关的轨迹表示,定义了时空路径的概念,以联合表示轨迹的时空属性。时空路径是一个序列,其中每个元素包含一个路段和一个时间间隔。我们使用道路段嵌入表示道路段,并设计了一个编码模型,将时间间隔转换为基于时间槽嵌入的隐藏表示。最后,将路段表示与时间间隔表示进行拼接,应用序列模型得到最终表示。

 路段嵌入旨在将每个路段转换为固定长度的向量,时间槽嵌入旨在将每个时间戳转换为固定长度的向量,外部特征编码器旨在将外部特征𝑓转换为固定长度的向量,轨迹编码器旨在将轨迹编码为固定长度的向量。

1)Time Interval Encoder 

 因此,我们需要将时间间隔编码为时间表示。如图6所示,编码模块可以分为两个部分,分别称为时隙嵌入和合并。

2)Trajectory Encoder

 创新点:1)就是考虑了历史旅行轨迹,在模型上面没有看出太多新颖的地方

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值