First De-Trend then Attend:Rethinking Attention for Time-Series Forecasting

First De-Trend then Attend: Rethinking Attention for Time-Series Forecasting

近年来,基于transformer的模型在长期时间序列预测中获得了很大的普及,并取得了很好的结果。除了在时域上学习注意力,最近的工作还探索了在频域(如傅立叶域、小波域)上学习注意力,因为在这些域上可以更好地捕获季节模式。本文试图理解不同时域和频域注意力模型之间的关系。在理论上,不同领域的注意力模型在线性条件下是等效的(即注意力分数的线性核)。实证分析了不同领域的注意力模型如何通过各种具有季节性、趋势性和噪声的合成实验显示出不同的行为,重点分析了softmax操作在其中的作用。这些理论和经验分析激励我们提出了一种新方法:TDformer(趋势分解Transformer),首先应用季节趋势分解,然后将预测趋势分量的MLP与预测季节分量的傅里叶注意力相加组合,以获得最终预测。在基准时间序列预测数据集上的广泛实验表明,TDformer与现有的基于注意力的模型相比取得了最先进的性能。 

 Our Method: TDformer

TDformer。首先采用季节趋势分解将上下文时间序列分解为趋势部分和季节部分;采用多层感知器(MLP)预测趋势部分,傅里叶注意力(FA)模型预测季节部分,将两者相加得到最终预测。 

1)For the trend component 

 总结:

 本文的驱动力是更好地理解注意力模型在时间、傅里叶和小波域的关系和单独的好处。理论上,在线性假设下,这三个注意力模型是等效的。然而,根据经验,由于softmax的作用,这些模型在应用于具有特定属性的数据集时具有各自的优势。此外,所有注意力模型在趋势数据上的泛化能力较差。基于这些性能差异分析,本文提出了TDformer,该模型在季节趋势分解后,分别使用MLP和傅里叶注意力模型对趋势和季节性进行建模。TDformer在时间序列预测基准上与当前的注意力模型相比取得了最先进的性能。未来,我们计划探索更复杂的模型来预测趋势(如自回归模型),并探索其他季节性趋势分解方法。

本文在模型设计上基于FEDformer模型,比较简单的设计框架。不同之处是将时域分解和频域分解结合起来,利用多种attention,实现融合,以达到预测时间序列的目的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在卫星时间序列数据中检测变点、趋势和季节性是一项重要的任务。卫星时间序列数据是通过卫星观测到的地球表面上的连续观测数据。这些数据可以用于监测和分析地球表面的变化,如气象、土地利用和植被覆盖等。 首先,检测变点是指在时间序列中找到突变或结构转变的点。变点可能代表了不同的影响因素引起的突变,例如自然事件、人为活动或仪器故障等。通过分析时间序列数据的变化趋势,可以使用一些统计方法来检测这些变点。 其次,趋势是指时间序列数据中长期的变化方式。有时,卫星时间序列数据中的变化可能会逐渐增长或减少,这可以被称为趋势。通过对时间序列数据进行回归分析或移动平均处理,我们可以检测和评估这种趋势。 季节性是指在一年内周期性的重复出现的模式。例如,地表温度通常会因季节变化而发生变化,夏季温度高,冬季温度低。对于卫星时间序列数据,我们可以通过分析数据的周期性变化来检测季节性。一种常用的方法是使用季节分解技术,如STL分解,将时间序列分解成长期趋势、季节变化和随机噪声部分。 通过检测卫星时间序列数据中的变点、趋势和季节性,我们可以更好地理解地球表面的变化,并为环境监测和资源管理提供更准确的信息。这些分析结果可以用于研究气候变化、土地利用变化、植被变化等,以及评估其对环境和人类社会的影响。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值