Graph-Aware Contrasting for Multivariate Time-Series Classification

Graph-Aware Contrasting for Multivariate Time-Series Classification AAAI-2024

对比学习作为一种自监督学习范式,在多变量时间序列(MTS)分类中得到广泛应用。它确保了未标记样本的不同视图之间的一致性,然后学习这些样本的有效表示。现有的对比学习方法主要是通过时间增强和对比技术来实现时间一致性,目的是保持MTS数据的时间模式不受扰动。然而,他们忽略了空间一致性,这需要单个传感器及其相关性的稳定性。由于MTS数据通常来自多个传感器,因此确保空间一致性对于MTS数据对比学习的整体性能至关重要。因此,我们提出图形感知对比(Graph-Aware contrast)来实现MTS数据的空间一致性。具体来说,我们提出了包括节点和边缘增强在内的图增强,以保持传感器及其相关性的稳定性,然后使用节点级和图级对比进行图对比,以提取鲁棒的传感器级和全局级特征。我们进一步引入了多窗口时间对比,以确保每个传感器数据的时间一致性大量的实验表明,我们提出的方法在各种MTS分类任务上达到了最先进的性能。

 总结:论文通过对比学习实现时间序列分类任务,主要考虑了多序列之间的空间一致性(相关性),因此构建图结构,然后实现图中节点级和边级的增强。在时间维度上,实现多窗口对比,这点的想法就一般了。总之论文的想法是将图增强方法和一般序列增强方法结合在一起,实现了时序增强。

一 框架

算法的核心思想在图框架上很清楚的表达了。

图2显示了TS-GAC的总体结构,其目的是为了实现MTS分类中CL的空间一致性。特定的增强和对比技术是为MTS数据量身定制的。对于增强,我们考虑节点和边缘增强来增强单个传感器及其相关性,为每个样本生成弱视图和强视图。首先应用节点频率增强,然后考虑MTS数据中的动态局部模式,将增强的样本分割到多个窗口。在每个窗口内使用节点时间增强,然后使用一维卷积神经网络(1D-CNN)处理这些窗口。随后,以每个传感器为节点构建图,传感器相关性为边。构造的图通过边缘增广进一步增强,然后由基于gnn的编码器处理以学习表示。其次,为了实现空间一致性,我们设计了图形对比,包括节点级对比(NC)和图形级对比(GC)。NC允许对每个样本内的传感器进行对比,以学习稳健的传感器级特征,而GC允许对每个训练批内的样本进行对比,从而促进稳健的全局级特征的学习。我们进一步引入了多窗口时间对比(MWTC),通过利用一个视图中的过去窗口来预测另一个视图中的未来窗口,以确保每个传感器的时间一致性。 (关键点还是在图增强和图对比学习上面,采用了分级增强,如果从图神经网络方面而言,增强方法并不很新颖,但是巧妙应用在时间序列中,就能很大程度提高时序表征的效果,这也是GNN的作用)

实验结果

 表1显示了与SOTA方法的比较。从表中,我们观察到TS-GAC在10个数据集中的8个上实现了最佳性能。特别是,TSGAC在HAR和ISRUC上取得了很大的改进,精度分别提高了1.44%和3.13%。在其余TS-GAC达到第二好的情况下,最佳结果的TS-GAC的差距很小,例如仅比FM的最佳精度低0.4%。同时,TS-GAC的方差较小,说明我们的TS-GAC更加稳健和稳定。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值