[运行diffusers报错] RuntimeError: Input type (c10::Half) and bias type (float) should be the same

报错情况

RuntimeError: Input type (c10::Half) and bias type (float) should be the same

出现问题原因

我们先生成pipeline然后读取一个vae的网上模型,然后将这个AutoencoderKL送入pipeline里面的时候就会遇到这样的问题。
因为pipe本身是half精度(float16)的,而新送进来的vae是flaot32的所以需要修改下精度

解决办法

添加.to(torch.float16)

 url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"  # can also be a local file
    pipe.vae=AutoencoderKL.from_single_file(url).to(torch.float16)

### 矩阵乘法形状不匹配的原因分析 在 Stable Diffusion 的实现过程中,如果遇到 `RuntimeError: mat1 and mat2 shapes cannot be multiplied` 错误,通常是因为两个矩阵的维度不符合线性代数中的矩阵相乘规则。具体来说,在 PyTorch 或其他深度学习框架中,矩阵 A 和 B 可以相乘的前提条件是 A 的列数等于 B 的行数。 当前错误提示表明第一个矩阵的大小为 \(2 \times 1280\),而第二个矩阵的大小为 \(2048 \times 2432\)。由于这两个矩阵无法满足上述前提条件,因此会抛出运行时错误[^1]。 --- ### 解决方案 以下是几种可能的解决方案: #### 方法一:检查模型权重文件 确保加载的预训练权重文件与代码版本兼容。有时,不同版本之间的参数数量或结构可能会发生变化,从而导致矩阵尺寸不一致。可以尝试重新下载官方发布的最新权重文件并替换现有文件。 ```python from diffusers import StableDiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id) ``` #### 方法二:调整输入张量的形状 验证输入数据是否经过适当处理以适应网络架构的要求。例如,某些层期望特定分辨率作为输入特征图。可以通过插值操作改变图像尺寸来修复此问题。 ```python import torch.nn.functional as F def resize_tensor(input_tensor, target_shape): resized_tensor = F.interpolate(input_tensor.unsqueeze(0), size=target_shape[-2:], mode='bilinear', align_corners=False).squeeze(0) return resized_tensor input_tensor = ... # 原始输入张量 target_shape = (2048, 2432) # 目标形状 adjusted_input = resize_tensor(input_tensor, target_shape) ``` #### 方法三:修改配置文件 部分情况下,可能是由于自定义修改了模型配置而导致内部计算逻辑出现问题。建议对比原始配置文件(通常是 JSON 格式),确认所有超参数设置无误后再执行推理过程。 ```json { "hidden_size": 768, "intermediate_size": 3072, ... } ``` #### 方法四:调试中间变量 通过打印每一步运算前后的张量信息定位确切发生冲突的位置,并据此采取相应措施加以修正。 ```python print(f"Matrix A Shape: {mat_a.shape}, Matrix B Shape: {mat_b.shape}") result = torch.matmul(mat_a, mat_b) ``` --- ### 注意事项 无论采用哪种方法解决问题,请务必保留备份副本以防意外损坏原有项目成果;另外还需注意更新依赖库至推荐版本以免引入更多潜在隐患。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉-Archer

图像分割没有团队的同学可加群

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值