PyTorch笔记12--卷积层

本文详细介绍了卷积运算在深度学习中的应用,包括一维、二维和三维卷积的概念,卷积核的作用,以及AlexNet中卷积核的可视化。同时,对比了nn.Conv2d和nn.ConvTranspose2d在卷积和转置卷积操作中的参数与功能,着重强调了转置卷积在图像上采样的作用。
摘要由CSDN通过智能技术生成

1d/2d/3d卷积

卷积运算:

        卷积核在输入信号(图像)上滑动,相应位置上进行乘加

卷积核:

        又称滤波器,过滤器,可认为是某种模式,某种特征

卷积过程:

        类似于用一个模板去图像上寻找与它相似的区域,与卷积核模式越相似,激活值越高,从而实现特征提取

AlexNet卷积核可视化,发现卷积核学习到的是边缘,条纹,色彩这一些细节模式

卷积维度:

        一般情况下,卷积核在几个维度上滑动,就是几维卷积

卷积-nn.Conv2d()

nn.Conv2d(#对多个二维信号进行二维卷积
    in_channels,#输入通道数
    out_channels,#输出通道数,等价于卷
积核个数
    kernel_size,#卷积核尺寸
    stride=1,#步长
    padding=0,#填充个数
    dilation=1,#空洞卷积大小
    groups=1,#分组卷积设置
    bias=True,#偏置
    padding_mode='zeros'
)

转置卷积-nn.ConvTranspose

转置卷积又称为部分跨越卷积(Fractionally-strided Convolution) ,用于对图像进行上采样(UpSample)

正常卷积:

        假设图像尺寸为4*4,卷积核为3*3,padding=0,stride=1

        图像:I𝟏𝟔∗𝟏

        卷积核:K𝟒∗𝟏𝟔

        输出:O𝟒∗𝟏 = K𝟒∗𝟏𝟔 ∗ I𝟏𝟔∗𝟏

转置卷积:

        假设图像尺寸为2*2,卷积核为3*3,padding=0,stride=1

        图像:I𝟒∗𝟏

        卷积核: K𝟏𝟔∗𝟒

        输出:O𝟏𝟔∗𝟏 = K𝟏𝟔∗𝟒 ∗ I𝟒∗𝟏

nn.ConvTranspose2d(#转置卷积实现上采样
    in_channels,#输入通道数
    out_channels,#输出通道数
    kernel_size,#卷积核尺寸
    stride=1,#步长
    padding=0,#填充个数
    output_padding=0,
    groups=1,#分组卷积设置
    bias=True,#偏置
    dilation=1,#空洞卷积大小
    padding_mode='zeros'
)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值