线性回归

本文介绍了线性回归在预测问题中的应用,如预测房价、销售额等。通过损失函数表示误差,讨论L0、L1、L2范式,并解释最小二乘法。介绍了线性回归的API使用,如sklearn的LinearRegression。此外,还探讨了回归模型的评价指标,如均方误差(MSE)和R²分数,并解释了在sklearn中负MSE的含义。
摘要由CSDN通过智能技术生成

回归问题的判定: 目标值是连续性的值,而分类问题的目标值是离散型的值。

回归处理的问题为预测: 预测房价 销售额的预测 设定贷款额度 总结:上述案例中,可以根据事物的相关特征预测出对应的结果值

官方解释:迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果。每一次对过程的重复称为一次“迭代”,而每一次迭代得到的结果会作为下一次迭代的初始值。

通过【损失函数】来表示误差

误差的大小线性回归方程中的系数w是有直系关联的

L0,L1和L2范式: L0是指向量中非0的元素的个数。 L1是指向量中各个元素绝对值之和。 L2是指向量各元素的平方和然后求平方根

SSE&RSS: 误差平方和 残差平方和 其中右下角的2表示向量y-Xw的L2范式,也就是我们的损失函数所代表的含义。在L2范式上开平方,就是我们的损失函数。我们往往称 呼这个式子为SSE(Sum of Sqaured Error,误差平方和)或者RSS(Residual Sum of Squares 残差平方和)。

最小二乘法 现在问题转换成了求解让RSS最小化的参数向量w,这种通过最小化真实值和预测值之间的RSS来求解参数的方法叫做最小二乘法。 求解极值(最小值)的第一步往往是求解一阶导数并让一阶导数等于0,最小二乘法也不能免俗。因此,我们现在在残差平方和RSS上对参数向量w求导。

API 最小二乘(正规方程):from sklearn.linear_model import LinearRegression

from sklearn.linear_model import LinearRegression
import sklearn.datasets as datasets
from sklearn.model_selection import t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值